| Citation: | CHANG Qitai, HUANG Yulong, MENG Xiangpeng, WANG Dingyuan, BAI Yisong, CHEN Xue. Research Progress of Electrocaloric Cooling Technology and Prospect for Space Applications (in Chinese). Chinese Journal of Space Science, 2025, 45(2): 437-448 doi: 10.11728/cjss2025.02.2025-0005 |
| [1] |
HU H H, JU Y W, YU J C, et al. Highly stabilized and efficient thermoelectric copper selenide[J]. Nature Materials, 2024, 23(4): 527-534
|
| [2] |
LI P, QIU P F, XU Q, et al. Colossal Nernst power factor in topological semimetal NbSb2[J]. Nature Communications, 2022, 13(1): 7612
|
| [3] |
ZHANG S, DELIYORE-RAMÍREZ J, DENG S, et al. Highly reversible extrinsic electrocaloric effects over a wide temperature range in epitaxially strained SrTiO3 films[J]. Nature Materials, 2024, 23(5): 639-647
|
| [4] |
QIAN S X, CATALINI D, MUEHLBAUER J, et al. High-performance multimode elastocaloric cooling system[J]. Science, 2023, 380(6646): 722-727
|
| [5] |
新黄河. 七次上太空的航天冰箱,为何只有海尔能造[EB/OL]. [2022-04-16]. https://www.toutiao.com/article/7087208257655210530/?wid=1747802224560
|
| [6] |
LI C Y, CAI Y C, XIE Y F, et al. Enhanced dielectric/ferroelectric properties of P(VDF-TrFE) composite films with organic perovskite ferroelectrics[J]. Applied Physics Express, 2023, 16(3): 031008
|
| [7] |
WANG D, CHEN X, YUAN G L, et al. Toward artificial intelligent self-cooling electronic skins: large electrocaloric effect in all-inorganic flexible thin films at room temperature[J]. Journal of Materiomics, 2019, 5(1): 66-72
|
| [8] |
白洋, 李建厅, 秦士强, 等. 面向高效固态制冷应用的铁电陶瓷材料[J]. 现代技术陶瓷, 2018, 39(6): 369-389
BAI Yang, LI Jianting, QIN Shiqiang, et al. Ferroelectric ceramics for high-efficient solid-state refrigeration[J]. Advanced Ceramics, 2018, 39(6): 369-389
|
| [9] |
SUN H C, MENG Y Z, HAN F F, et al. Simultaneously achieved large electrocaloric effect and broad working temperature range in transparent Sm-doped 0.88Pb(Mg1/3Nb2/3)O3-0.12PbTiO3 ceramics at low electric field[J]. Ceramics International, 2024, 50(11): 19237-19244
|
| [10] |
ROŽIČ B, KOSEC M, URŠIČ H, et al. Influence of the critical point on the electrocaloric response of relaxor ferroelectrics[J]. Journal of Applied Physics, 2011, 110(6): 064118
|
| [11] |
PENG B L, FAN H Q, ZHANG Q. A giant electrocaloric effect in nanoscale antiferroelectric and ferroelectric phases coexisting in a relaxor Pb0.8Ba0.2ZrO3 thin film at room temperature[J]. Advanced Functional Materials, 2013, 23(23): 2987-2992
|
| [12] |
LU S G, ROŽIČ B, ZHANG Q M, et al. Organic and inorganic relaxor ferroelectrics with giant electrocaloric effect[J]. Applied Physics Letters, 2010, 97(16): 162904
|
| [13] |
李子超, 施骏业, 陈江平, 等. 电卡制冷材料与系统发展现状与展望[J]. 制冷学报, 2021, 42(1): 1-13
LI Zichao, SHI Junye, CHEN Jiangping, et al. Electrocaloric cooling materials and systems: a review and perspective[J]. Journal of Refrigeration, 2021, 42(1): 1-13
|
| [14] |
QIAN G M, ZHU K J, LI X, et al. The electrocaloric effect of PBZ/PVDF flexible composite film near room temperature[J]. Journal of Materials Science: Materials in Electronics, 2021, 32(12): 12001-12016
|
| [15] |
ZHUO F P, LI Q, GAO J H, et al. Giant negative electrocaloric effect in (Pb, La)(Zr, Sn, Ti)O3 antiferroelectrics near room temperature[J]. ACS Applied Materials :Times New Roman;">& Interfaces, 2018, 10(14): 11747-11755
|
| [16] |
LI J L, CHANG Y F, YANG S, et al. Lead-free bilayer thick films with giant electrocaloric effect near room temperature[J]. ACS Applied Materials :Times New Roman;">& Interfaces, 2019, 11(26): 23346-23352
|
| [17] |
MISCHENKO A S, ZHANG Q, SCOTT J F, et al. Giant electrocaloric effect in thin-film PbZr0.95Ti0.05O3[J]. Science, 2006, 311(5765): 1270-1271
|
| [18] |
NAIR B, USUI T, CROSSLEY S, et al. Large electrocaloric effects in oxide multilayer capacitors over a wide temperature range[J]. Nature, 2019, 575(7783): 468-472
|
| [19] |
ZHENG S Y, DU F H, ZHENG L R, et al. Colossal electrocaloric effect in an interface-augmented ferroelectric polymer[J]. Science, 2023, 382(6674): 1020-1026
|
| [20] |
HUANG Y F, GU T, RUI G C, et al. A relaxor ferroelectric polymer with an ultrahigh dielectric constant largely promotes the dissociation of lithium salts to achieve high ionic conductivity[J]. Energy :Times New Roman;">& Environmental Science, 2021, 14(11): 6021-6029
|
| [21] |
SADL M, PRAH U, KOVACOVA V, et al. Multifunctional flexible ferroelectric thick-film structures with energy storage, piezoelectric and electrocaloric performance[J]. Journal of Materials Chemistry C, 2023, 11(29): 10058-10068 doi: 10.1039/D3TC01555F
|
| [22] |
LI X Y, YANG J L, PAN X H, et al. New soft actuating way by rapidly temperature change of electrocaloric effect[J]. ACS Applied Materials :Times New Roman;">& Interfaces, 2023, 15(24): 29449-29456
|
| [23] |
LU S J, CHEN G R, ZHANG Y C, et al. Electrocaloric effect in lead-free 0.5Ba(Zr0.2Ti0.8) O3-0.5(Ba0.7Ca0.3) TiO3 ceramic measured by direct and indirect methods[J]. Ceramics International, 2018, 44(17): 21950-21955
|
| [24] |
QIAN X S, HAN D L, ZHENG L R, et al. High-entropy polymer produces a giant electrocaloric effect at low fields[J]. Nature, 2021, 600(7890): 664-669
|
| [25] |
YE H J, QIAN X S, JEONG D Y, et al. Giant electrocaloric effect in BaZr0.2Ti0.8O3 thick film[J]. Applied Physics Letters, 2014, 105(15): 152908
|
| [26] |
LI X Y, QIAN X S, LU S G, et al. Tunable temperature dependence of electrocaloric effect in ferroelectric relaxor poly (vinylidene fluoride-trifluoroethylene-chlorofluoroethylene terpolymer[J]. Applied Physics Letters, 2011, 99(5): 052907
|
| [27] |
LI Q, ZHANG G Z, ZHANG X S, et al. Relaxor ferroelectric-based electrocaloric polymer nanocomposites with a broad operating temperature range and high cooling energy[J]. Advanced Materials, 2015, 27(13): 2236-2241
|
| [28] |
赵建福, 王双峰, 刘强, 等. 中国微重力科学研究回顾与展望[J]. 空间科学学报, 2021, 41(1): 34-45 doi: 10.11728/cjss2021.01.034
ZHAO Jianfu, WANG Shuangfeng, LIU Qiang, et al. Retrospect and perspective on microgravity science in China[J]. Chinese Journal of Space Science, 2021, 41(1): 34-45 doi: 10.11728/cjss2021.01.034
|
| [29] |
MENG Y, PU J H, PEI Q B. Electrocaloric cooling over high device temperature span[J]. Joule, 2021, 5(4): 780-793 doi: 10.1016/j.joule.2020.12.018
|
| [30] |
SINYAVSKY Y V, PASHKOV N D, GOROVOY Y M, et al. The optical ferroelectric ceramic as working body for electrocaloric refrigeration[J]. Ferroelectrics, 1989, 90(1): 213-217
|
| [31] |
PLAZNIK U, KITANOVSKI A, ROŽIČ B, et al. Bulk relaxor ferroelectric ceramics as a working body for an electrocaloric cooling device[J]. Applied Physics Letters, 2015, 106(4): 043903
|
| [32] |
JIA Y B, JU Y S. A solid-state refrigerator based on the electrocaloric effect[J]. Applied Physics Letters, 2012, 100(24): 242901
|
| [33] |
LI M D, SHEN X Q, CHEN X, et al. Thermal management of chips by a device prototype using synergistic effects of 3-D heat-conductive network and electrocaloric refrigeration[J]. Nature Communications, 2022, 13(1): 5849
|
| [34] |
HAN D L, ZHANG Y J, HUANG C L, et al. Self-oscillating polymeric refrigerator with high energy efficiency[J]. Nature, 2024, 629(8014): 1041-1046
|
| [35] |
MA R J, ZHANG Z Y, TONG K, et al. Highly efficient electrocaloric cooling with electrostatic actuation[J]. Science, 2017, 357(6356): 1130-1134
|
| [36] |
BAI P J, ZHANG Q, CUI H, et al. An active pixel-matrix electrocaloric device for targeted and differential thermal management[J]. Advanced Materials, 2023, 35(15): 2209181
|
| [37] |
WANG Z Y, BO Y W, BAI P J, et al. Self-sustaining personal all-day thermoregulatory clothing using only sunlight[J]. Science, 2023, 382(6676): 1291-1296
|
| [38] |
WU H X, ZHU Y, YAN W Z, et al. A self-regenerative heat pump based on a dual-functional relaxor ferroelectric polymer[J]. Science, 2024, 386(6721): 546-551
|
| [39] |
MENG Y, ZHANG Z Y, WU H X, et al. A cascade electrocaloric cooling device for large temperature lift[J]. Nature Energy, 2020, 5(12): 996-1002
|
| [40] |
CUI H, ZHANG Q, BO Y W, et al. Flexible microfluidic electrocaloric cooling capillary tube with giant specific device cooling power density[J]. Joule, 2022, 6(1): 258-268
|
| [41] |
BAI P J, CUI H, ZHANG D, et al. A highly efficient cascade electrocaloric cooling tube with enhanced temperature change by sawtooth voltage[J]. Next Materials, 2023, 1(1): 100001
|
| [42] |
GU H M, QIAN X S, LI X Y, et al. A chip scale electrocaloric effect based cooling device[J]. Applied Physics Letters, 2013, 102(12): 122904 doi: 10.1063/1.4799283
|
| [43] |
WANG Y D, ZHANG Z Y, USUI T, et al. A high-performance solid-state electrocaloric cooling system[J]. Science, 2020, 370(6512): 129-133
|
| [44] |
PLAZNIK U, VRABELJ M, KUTNJAK Z, et al. Numerical modelling and experimental validation of a regenerative electrocaloric cooler[J]. International Journal of Refrigeration, 2019, 98: 139-149
|
| [45] |
TORELLÓ A, LHERITIER P, USUI T, et al. Giant temperature span in electrocaloric regenerator[J]. Science, 2020, 370(6512): 125-129 doi: 10.1126/science.abb8045
|
| [46] |
BLUMENTHAL P, RAATZ A. Design methodology for electrocaloric cooling systems[J]. Energy Technology, 2018, 6(8): 1560-1566 doi: 10.1002/ente.201800139
|
| [47] |
LI J N, TORELLÓ A, KOVACOVA V, et al. High cooling performance in a double-loop electrocaloric heat pump[J]. Science, 2023, 382(6672): 801-805
|