Citation: | JIANG Jianan, ZOU Ziming, LU Yang. Machine Identification Method of Auroral Substorm Onset Time (in Chinese). Chinese Journal of Space Science, 2025, 45(3): 662-676 doi: 10.11728/cjss2025.03.2024-0039 |
[1] |
涂传诒, 宗秋刚, 周煦之. 日地空间物理学 下册·磁层物理[M]. 2版. 北京: 科学出版社, 2020
TU Chuanzhi, ZONG Qiugang, ZHOU Xuzhi. Solar-Terrestrial Physics: Volume 2 - Magnetospheric Physics\, [M]. Beijing: Science Press, 2020
|
[2] |
AKASOFU S I. Dynamic morphology of auroras[J]. Space Science Reviews, 1965, 4(4): 498-540
|
[3] |
JUUSOLA L, ØSTGAARD N, TANSKANEN E, et al. Earthward plasma sheet flows during substorm phases[J]. Journal of Geophysical Research: Space Physics, 2011, 116(A10): A10228
|
[4] |
PARTAMIES N, JUUSOLA L, TANSKANEN E, et al. Statistical properties of substorms during different storm and solar cycle phases[J]. Annales Geophysicae, 2013, 31(2): 349-358 doi: 10.5194/angeo-31-349-2013
|
[5] |
OHTANI S, GJERLOEV J W. Is the substorm current wedge an ensemble of wedgelets: revisit to midlatitude positive bays[J]. Journal of Geophysical Research: Space Physics, 2020, 125(9): e2020JA027902 doi: 10.1029/2020JA027902
|
[6] |
FREY H U, MENDE S B, ANGELOPOULOS V, et al. Substorm onset observations by IMAGE-FUV[J]. Journal of Geophysical Research: Space Physics, 2004, 109(A10): A10304
|
[7] |
LIOU K. Polar ultraviolet imager observation of auroral breakup[J]. Journal of Geophysical Research: Space Physics, 2010, 115(A12): A12219
|
[8] |
杨秋菊, 梁继民, 刘俊明, 等. 一种基于紫外极光图像的亚暴膨胀期起始时刻的自动检测方法[J]. 地球物理学报, 2013, 56(5): 1435-1447
YANG Qiuju, LIANG Jimin, LIU Junming, et al. A method for automatic identification of substorm expansion phase onset from UVI images[J]. Chinese Journal of Geophysics, 2013, 56(5): 1435-1447
|
[9] |
YANG X, GAO X B, TAO D C, et al. Shape-constrained sparse and low-rank decomposition for auroral substorm detection[J]. IEEE Transactions on Neural Networks and Learning Systems, 2016, 27(1): 32-46 doi: 10.1109/TNNLS.2015.2411613
|
[10] |
韩怡园, 韩冰, 高新波. 结合眼动信息和序列指纹的亚暴事件识别方法[J]. 计算机科学与探索, 2023, 17(1): 187-197
HAN Yiyuan, HAN Bing, GAO Xinbo. Auroral Substorm event recognition method combining eye movement Information and sequence fingerprint[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(1): 187-197
|
[11] |
杨秋菊, 任杰, 向晗. 基于深度学习的极光亚暴时-空自动检测[J]. 地球物理学报, 2022, 65(3): 898-907
YANG Qiuju, REN Jie, XIANG Han. Spatio-temporal detection of auroral substorm based on deep learning[J]. Chinese Journal of Geophysics, 2022, 65(3): 898-907
|
[12] |
TORR M R, TORR D G, ZUKIC M, et al. A far ultraviolet imager for the international solar-terrestrial physics mission[J]. Space Science Reviews, 1995, 71(1): 329-383
|
[13] |
LUMMERZHEIM D, LILENSTEN J. Electron transport and energy degradation in the ionosphere: evaluation of the numerical solution, comparison with laboratory experiments and auroral observations[J]. Annales Geophysicae, 1994, 12(10): 1039-1051 doi: 10.1007/s005850050127
|
[14] |
RICHMOND A D. Ionospheric electrodynamics using magnetic apex coordinates[J]. Journal of Geomagnetism and Geoelectricity, 1995, 47(2): 191-212 doi: 10.5636/jgg.47.191
|
[15] |
JIANG J N, ZOU Z M, LU Y. A ConvLSTM-based prediction model of aurora evolution during the substorm expansion phase[J]. Earth and Space Science, 2023, 10(4): e2022EA002721 doi: 10.1029/2022EA002721
|
[16] |
TAN M X, LE Q V. EfficientNetV2: Smaller models and faster training[OL]. arXiv preprint arXiv: 2104.00298, 2021
|
[17] |
付国栋, 黄进, 杨涛, 等. 改进CBAM的轻量级注意力模型[J]. 计算机工程与应用, 2021, 57(20): 150-156
FU Guodong, HUANG Jin, YANG Tao, et al. Improved lightweight attention model based on CBAM[J]. Computer Engineering and Applications, 2021, 57(20): 150-156
|
[18] |
卫雅娜, 王志彬, 乔晓军, 等. 基于注意力机制与EfficientNet的轻量化水稻病害识别方法[J]. 中国农机化学报, 2022, 43(11): 172-181
WEI Ya’na, WANG Zhibin, QIAO Xiaojun, et al. Lightweight rice disease identification method based on attention mechanism and EfficientNet[J]. Journal of Chinese Agricultural Mechanization, 2022, 43(11): 172-181
|
[19] |
RAMACHANDRAN P, ZOPH B, LE Q V. Searching for activation functions[OL]. arXiv preprint arXiv: 1710.05941, 2017
|
[20] |
CHOLLET F. Xception: Deep learning with depthwise separable convolutions[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI, USA: IEEE, 2017: 1800-1807
|
[21] |
KINGMA D P, BA J. Adam: A method for stochastic optimization[OL]. arXiv preprint arXiv: 1412.6980, 2017
|
[22] |
SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA: IEEE, 2016: 2818-2826
|
[23] |
ARNAB A, DEHGHANI M, HEIGOLD G, et al. ViViT: A video vision transformer[C]//2021 IEEE/CVF International Conference on Computer Vision (ICCV). Montreal, QC, Canada: IEEE, 2021
|
[24] |
DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: Transformers for image recognition at scale[OL]. arXiv: 2010.11929, 2021
|
[25] |
CHEN X H, ZHOU Y C, WU D Y, et al. Imagine by reasoning: A reasoning-based implicit semantic data augmentation for long-tailed classification[C]//Thirty-Sixth AAAI Conference on Artificial Intelligence. Palo Alto, CA, USA: AAAI, 2022
|
[26] |
ZHANG S Y, LI Z M, YAN S P, et al. Distribution alignment: A unified framework for long-tail visual recognition[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville, TN, USA: IEEE, 2021
|
[27] |
刘晓红, 王咏梅, 王天放. 基于包应用标准的紫外极光成像仪通信控制系统的设计与实现[J]. 空间科学学报, 2022, 42(6): 1204-1209 doi: 10.11728/cjss2022.06.211108112
LIU Xiaohong, WANG Yongmei, WANG Tianfang. Design and realization of the ultra-violet imager communication and control system based on packet utilization standard[J]. Chinese Journal of Space Science, 2022, 42(6): 1204-1209 doi: 10.11728/cjss2022.06.211108112
|