Turn off MathJax
Article Contents
JIANG Jianan, ZOU Ziming, LU Yang. Machine Identification Method of Auroral Substorm Onset Time (in Chinese). Chinese Journal of Space Science, 2025, 45(3): 662-676 doi: 10.11728/cjss2025.03.2024-0039
Citation: JIANG Jianan, ZOU Ziming, LU Yang. Machine Identification Method of Auroral Substorm Onset Time (in Chinese). Chinese Journal of Space Science, 2025, 45(3): 662-676 doi: 10.11728/cjss2025.03.2024-0039

Machine Identification Method of Auroral Substorm Onset Time

doi: 10.11728/cjss2025.03.2024-0039 cstr: 32142.14.cjss.2024-0039
  • Received Date: 2024-03-12
  • Rev Recd Date: 2024-04-26
  • Available Online: 2024-07-08
  • Auroral substorm is a geomagnetic disturbance resulting from the interaction between Earth’s magnetic field and the solar wind. The accurate identification of the onset times is crucial for a deep understanding of the underlying physical mechanisms. The existing machine methods for auroral substorm identification differ from manual identification standards and typically require complex image preprocessing and parameter tuning by manual. To achieve a machine model consistent with manual identification standards, this paper designs two identification strategies aimed at addressing the issue of variable image sequence lengths encountered in replicating manual standards. Based on deep learning methods, this paper proposes an EfficientNet model featuring CBAM attention as a key component for model construction. The model is trained using ultraviolet auroral images from the Polar satellite between 1996 and 1998 and tested on image data from 1999 to 2000. The model achieves an identification accuracy of up to 0.98 and an efficiency of 36.93 frames per second. This model not only eliminates the reliance on image preprocessing present in existing models but also adapts to real-world observations with unequal image sequence lengths and extreme imbalances in the number of samples between substorm and non-substorm sequences, demonstrating its high practicality.

     

  • loading
  • [1]
    涂传诒, 宗秋刚, 周煦之. 日地空间物理学 下册·磁层物理[M]. 2版. 北京: 科学出版社, 2020

    TU Chuanzhi, ZONG Qiugang, ZHOU Xuzhi. Solar-Terrestrial Physics: Volume 2 - Magnetospheric Physics\, [M]. Beijing: Science Press, 2020
    [2]
    AKASOFU S I. Dynamic morphology of auroras[J]. Space Science Reviews, 1965, 4(4): 498-540
    [3]
    JUUSOLA L, ØSTGAARD N, TANSKANEN E, et al. Earthward plasma sheet flows during substorm phases[J]. Journal of Geophysical Research: Space Physics, 2011, 116(A10): A10228
    [4]
    PARTAMIES N, JUUSOLA L, TANSKANEN E, et al. Statistical properties of substorms during different storm and solar cycle phases[J]. Annales Geophysicae, 2013, 31(2): 349-358 doi: 10.5194/angeo-31-349-2013
    [5]
    OHTANI S, GJERLOEV J W. Is the substorm current wedge an ensemble of wedgelets: revisit to midlatitude positive bays[J]. Journal of Geophysical Research: Space Physics, 2020, 125(9): e2020JA027902 doi: 10.1029/2020JA027902
    [6]
    FREY H U, MENDE S B, ANGELOPOULOS V, et al. Substorm onset observations by IMAGE-FUV[J]. Journal of Geophysical Research: Space Physics, 2004, 109(A10): A10304
    [7]
    LIOU K. Polar ultraviolet imager observation of auroral breakup[J]. Journal of Geophysical Research: Space Physics, 2010, 115(A12): A12219
    [8]
    杨秋菊, 梁继民, 刘俊明, 等. 一种基于紫外极光图像的亚暴膨胀期起始时刻的自动检测方法[J]. 地球物理学报, 2013, 56(5): 1435-1447

    YANG Qiuju, LIANG Jimin, LIU Junming, et al. A method for automatic identification of substorm expansion phase onset from UVI images[J]. Chinese Journal of Geophysics, 2013, 56(5): 1435-1447
    [9]
    YANG X, GAO X B, TAO D C, et al. Shape-constrained sparse and low-rank decomposition for auroral substorm detection[J]. IEEE Transactions on Neural Networks and Learning Systems, 2016, 27(1): 32-46 doi: 10.1109/TNNLS.2015.2411613
    [10]
    韩怡园, 韩冰, 高新波. 结合眼动信息和序列指纹的亚暴事件识别方法[J]. 计算机科学与探索, 2023, 17(1): 187-197

    HAN Yiyuan, HAN Bing, GAO Xinbo. Auroral Substorm event recognition method combining eye movement Information and sequence fingerprint[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(1): 187-197
    [11]
    杨秋菊, 任杰, 向晗. 基于深度学习的极光亚暴时-空自动检测[J]. 地球物理学报, 2022, 65(3): 898-907

    YANG Qiuju, REN Jie, XIANG Han. Spatio-temporal detection of auroral substorm based on deep learning[J]. Chinese Journal of Geophysics, 2022, 65(3): 898-907
    [12]
    TORR M R, TORR D G, ZUKIC M, et al. A far ultraviolet imager for the international solar-terrestrial physics mission[J]. Space Science Reviews, 1995, 71(1): 329-383
    [13]
    LUMMERZHEIM D, LILENSTEN J. Electron transport and energy degradation in the ionosphere: evaluation of the numerical solution, comparison with laboratory experiments and auroral observations[J]. Annales Geophysicae, 1994, 12(10): 1039-1051 doi: 10.1007/s005850050127
    [14]
    RICHMOND A D. Ionospheric electrodynamics using magnetic apex coordinates[J]. Journal of Geomagnetism and Geoelectricity, 1995, 47(2): 191-212 doi: 10.5636/jgg.47.191
    [15]
    JIANG J N, ZOU Z M, LU Y. A ConvLSTM-based prediction model of aurora evolution during the substorm expansion phase[J]. Earth and Space Science, 2023, 10(4): e2022EA002721 doi: 10.1029/2022EA002721
    [16]
    TAN M X, LE Q V. EfficientNetV2: Smaller models and faster training[OL]. arXiv preprint arXiv: 2104.00298, 2021
    [17]
    付国栋, 黄进, 杨涛, 等. 改进CBAM的轻量级注意力模型[J]. 计算机工程与应用, 2021, 57(20): 150-156

    FU Guodong, HUANG Jin, YANG Tao, et al. Improved lightweight attention model based on CBAM[J]. Computer Engineering and Applications, 2021, 57(20): 150-156
    [18]
    卫雅娜, 王志彬, 乔晓军, 等. 基于注意力机制与EfficientNet的轻量化水稻病害识别方法[J]. 中国农机化学报, 2022, 43(11): 172-181

    WEI Ya’na, WANG Zhibin, QIAO Xiaojun, et al. Lightweight rice disease identification method based on attention mechanism and EfficientNet[J]. Journal of Chinese Agricultural Mechanization, 2022, 43(11): 172-181
    [19]
    RAMACHANDRAN P, ZOPH B, LE Q V. Searching for activation functions[OL]. arXiv preprint arXiv: 1710.05941, 2017
    [20]
    CHOLLET F. Xception: Deep learning with depthwise separable convolutions[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI, USA: IEEE, 2017: 1800-1807
    [21]
    KINGMA D P, BA J. Adam: A method for stochastic optimization[OL]. arXiv preprint arXiv: 1412.6980, 2017
    [22]
    SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA: IEEE, 2016: 2818-2826
    [23]
    ARNAB A, DEHGHANI M, HEIGOLD G, et al. ViViT: A video vision transformer[C]//2021 IEEE/CVF International Conference on Computer Vision (ICCV). Montreal, QC, Canada: IEEE, 2021
    [24]
    DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: Transformers for image recognition at scale[OL]. arXiv: 2010.11929, 2021
    [25]
    CHEN X H, ZHOU Y C, WU D Y, et al. Imagine by reasoning: A reasoning-based implicit semantic data augmentation for long-tailed classification[C]//Thirty-Sixth AAAI Conference on Artificial Intelligence. Palo Alto, CA, USA: AAAI, 2022
    [26]
    ZHANG S Y, LI Z M, YAN S P, et al. Distribution alignment: A unified framework for long-tail visual recognition[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville, TN, USA: IEEE, 2021
    [27]
    刘晓红, 王咏梅, 王天放. 基于包应用标准的紫外极光成像仪通信控制系统的设计与实现[J]. 空间科学学报, 2022, 42(6): 1204-1209 doi: 10.11728/cjss2022.06.211108112

    LIU Xiaohong, WANG Yongmei, WANG Tianfang. Design and realization of the ultra-violet imager communication and control system based on packet utilization standard[J]. Chinese Journal of Space Science, 2022, 42(6): 1204-1209 doi: 10.11728/cjss2022.06.211108112
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(4)

    Article Metrics

    Article Views(246) PDF Downloads(15) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return