Turn off MathJax
Article Contents
YAN Lihui, LIU Heshan, BIAN Xing, LUO Ziren. Design and Verification of Temperature Measurement Bridge Excitation Source in the Taiji Program (in Chinese). Chinese Journal of Space Science, 2025, 45(3): 1-10 doi: 10.11728/cjss2025.03.2024-0040
Citation: YAN Lihui, LIU Heshan, BIAN Xing, LUO Ziren. Design and Verification of Temperature Measurement Bridge Excitation Source in the Taiji Program (in Chinese). Chinese Journal of Space Science, 2025, 45(3): 1-10 doi: 10.11728/cjss2025.03.2024-0040

Design and Verification of Temperature Measurement Bridge Excitation Source in the Taiji Program

doi: 10.11728/cjss2025.03.2024-0040 cstr: 32142.14.cjss.2024-0040
  • Received Date: 2024-03-13
  • Rev Recd Date: 2024-04-15
  • Available Online: 2024-05-27
  • Thermal disturbance is one of the most important sources of interference for spatial gravitational wave detection. To meet the needs of the Taiji program for spatial gravitational wave detection, it is necessary to ensure that the temperature fluctuation in the area where the detector's optical interference platform is located is better than 10 μK·Hz–1/2 at frequencies between 0.1 mHz and 1 Hz. This requires μK·Hz–1/2 temperature measurement technology. In response to the need for high-resolution temperature measurement technology in spatial gravitational wave detection, this paper has developed an experimental setup for a temperature measurement bridge with multiple excitation sources based on the Wheatstone bridge. The design of the excitation sources and other components of the temperature measurement bridge is discussed, and experimental verification of the noise floor of the temperature measurement bridge under excitation from constant voltage sources, constant current sources, and alternating current sources is conducted. The experimental results show that when the bridge is excited by the three excitation sources, the alternating current source combined with phase-locked readout technology can achieve lower background noise compared to the other two excitation sources. The noise is better than 10 μK·Hz–1/2 in the frequency range of 30 mHz to 1 Hz, basically meeting the requirements of the Taiji Pathfinder. This provides an important reference for the subsequent development of the μK·Hz–1/2-level temperature measurement system for the Taiji program.

     

  • loading
  • [1]
    罗子人, 白姗, 边星, 等. 空间激光干涉引力波探测[J]. 力学进展, 2013, 43(4): 415-447 doi: 10.6052/1000-0992-13-044

    LUO Ziren, BAI Shan, BIAN Xing, et al. Gravitational wave detection by space laser interferometry[J]. Advances in Mechanics, 2013, 43(4): 415-447 doi: 10.6052/1000-0992-13-044
    [2]
    (吴岳良, 胡文瑞, 王建宇, 等. 空间引力波探测综述与拟解决的科学问题[J]. 空间科学学报, 2023, 43(4): 589-599 doi: 10.11728/cjss2023.04.yg08

    WU Yueliang, HU Wenrui, WANG Jianyu, et al. Review and scientific objectives of spaceborne gravitational wave detection missions[J]. Chinese Journal of Space Science, 2023, 43(4): 589-599 doi: 10.11728/cjss2023.04.yg08
    [3]
    罗子人, 张敏, 靳刚, 等. 中国空间引力波探测"太极计划"及"太极1号"在轨测试[J]. 深空探测学报, 2020, 7(1): 3-10

    LUO Ziren, ZHANG Min, JIN Gang, et al. Introduction of Chinese space-borne gravitational wave detection program "Taiji" and "Taiji-1" satellite mission[J]. Journal of Deep Space Exploration, 2020, 7(1): 3-10
    [4]
    王坦, 何思译, 徐佳文. 引力波探测中的噪声抑制技术综述[J]. 天文学进展, 2022, 40(4): 556-574 doi: 10.3969/j.issn.1000-8349.2022.04.04

    WANG Tan, HE Siyi, XU Jiawen. Review of noise suppressing technologies for gravitational-waves detection[J]. Progress in Astronomy, 2022, 40(4): 556-574 doi: 10.3969/j.issn.1000-8349.2022.04.04
    [5]
    LUO J, CHEN L S, DUAN H Z, et al. TianQin: a space-borne gravitational wave detector[J]. Classical and Quantum Gravity, 2016, 33(3): 035010 doi: 10.1088/0264-9381/33/3/035010
    [6]
    DEHNE M, TRÖBS M, HEINZEL G, et al. Verification of polarising optics for the LISA optical bench[J]. Optics Express, 2012, 20(25): 27273-27287 doi: 10.1364/OE.20.027273
    [7]
    CHEN K, ZHANG X F, GUO T, et al. Key technologies analysis and design of ultra-clean & ultra-stable spacecraft for gravitational wave detection[J]. International Journal of Modern Physics A, 2021, 36(11n12): 2140021 doi: 10.1142/S0217751X21400212
    [8]
    ZHAO Y Z, BERGMANN J H M. Non-contact infrared thermometers and thermal scanners for human body temperature monitoring: a systematic review[J]. Sensors, 2023, 23(17): 7439 doi: 10.3390/s23177439
    [9]
    WUDY F E, MOOSBAUER D J, MULTERER M, et al. Fast micro-Kelvin resolution thermometer based on NTC thermistors[J]. Journal of Chemical :Times New Roman;">& Engineering Data, 2011, 56(12): 4823-4828
    [10]
    LOBO A, NOFRARIAS M, SANJUAN J. Thermal diagnostics for LTP[J]. Classical and Quantum Gravity, 2005, 22(10): S171-S176 doi: 10.1088/0264-9381/22/10/006
    [11]
    ROMA-DOLLASE D, GUALANI V, GOHLKE M, et al. Resistive-based micro-kelvin temperature resolution for ultra-stable space experiments[J]. Sensors, 2022, 23(1): 145 doi: 10.3390/s23010145
    [12]
    刘红, 张晓峰, 冯建朝, 等. 精密热控技术在太极一号卫星上的应用[J]. 空间科学学报, 2021, 41(2): 337-341 doi: 10.11728/cjss2021.02.337

    LIU Hong, ZHANG Xiaofeng, FENG Jianchao, et al. Application of precision thermal control techniques in Taiji-1 satellite[J]. Chinese Journal of Space Science, 2021, 41(2): 337-341 doi: 10.11728/cjss2021.02.337
    [13]
    代国红, 许艺铧, 吴庆丰, 等. 基于惠斯通电桥的弯曲应变测量灵敏度研究[J]. 南昌大学学报(理科版), 2022, 46(1): 66-71

    DAI Guohong, XU Yihua, WU Qingfeng, et al. Strain measurement sensitivity based on Wheatstone bridge[J]. Journal of Nanchang University (Natural Science), 2022, 46(1): 66-71
    [14]
    GHOSH S, MUKHERJEE A, SAHOO K, et al. A novel sensitivity enhancement technique employing wheatstone's bridge for strain and temperature measurement[C]//Proceedings of the 2015 Third International Conference on Computer, Communication, Control and Information Technology (C3IT). Hooghly: IEEE, 2015: 1-6
    [15]
    SANJUÁN J, LOBO A, NOFRARIAS M, et al. Thermal diagnostics front-end electronics for LISA Pathfinder[J]. Review of Scientific Instruments, 2007, 78(10): 104904 doi: 10.1063/1.2800776
    [16]
    ALEKSIĆ O S, RADOJČIĆ B M, RAMOVIĆ R M. Modeling and simulation of NTC thick film thermistor geometries[J]. Microelectronics International, 2007, 24(1): 27-34 doi: 10.1108/13565360710725919
    [17]
    SARKAR S. Platinum RTD sensor based multi-channel high-precision temperature measurement system for temperature range −100°C to +100 °C using single quartic function[J]. Cogent Engineering, 2018, 5(1): 1558687 doi: 10.1080/23311916.2018.1558687
    [18]
    MCCARTHY M, MCCARTHY A. RTD温度测量系统对ADC的要求[J]. 今日电子, 2016(4): 31-33 doi: 10.3969/j.issn.1004-9606.2016.04.005

    MCCARTHY M, MCCARTHY A. ADC Requirements for RTD Temperature Measurement Systems[J]. Electronics Today, 2016(4): 31-33 doi: 10.3969/j.issn.1004-9606.2016.04.005
    [19]
    MENG W J, ZHANG F H, DONG G D, et al. Research on losses of PCB parasitic capacitance for GaN-based full bridge converters[J]. IEEE Transactions on Power Electronics, 2021, 36(4): 4287-4299 doi: 10.1109/TPEL.2020.3024881
    [20]
    DE GRAAF G, WOLFFENBUTTEL R F. Lock-in amplifier techniques for low-frequency modulated sensor applications[C]//2012 IEEE International Instrumentation and Measurement Technology Conference Proceedings. Graz: IEEE, 2012: 1745-1749
    [21]
    LIU H, LIU W H. An improved adaptive time difference estimation method based on median filter in impulse environment[J]. International Journal of Information and Communication Sciences, 2021, 6(3): 66-74 doi: 10.11648/j.ijics.20210603.13
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)

    Article Metrics

    Article Views(349) PDF Downloads(20) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return