Citation: | YAN Lihui, LIU Heshan, BIAN Xing, LUO Ziren. Design and Verification of Temperature Measurement Bridge Excitation Source in the Taiji Program (in Chinese). Chinese Journal of Space Science, 2025, 45(3): 1-10 doi: 10.11728/cjss2025.03.2024-0040 |
[1] |
罗子人, 白姗, 边星, 等. 空间激光干涉引力波探测[J]. 力学进展, 2013, 43(4): 415-447 doi: 10.6052/1000-0992-13-044
LUO Ziren, BAI Shan, BIAN Xing, et al. Gravitational wave detection by space laser interferometry[J]. Advances in Mechanics, 2013, 43(4): 415-447 doi: 10.6052/1000-0992-13-044
|
[2] |
(吴岳良, 胡文瑞, 王建宇, 等. 空间引力波探测综述与拟解决的科学问题[J]. 空间科学学报, 2023, 43(4): 589-599 doi: 10.11728/cjss2023.04.yg08
WU Yueliang, HU Wenrui, WANG Jianyu, et al. Review and scientific objectives of spaceborne gravitational wave detection missions[J]. Chinese Journal of Space Science, 2023, 43(4): 589-599 doi: 10.11728/cjss2023.04.yg08
|
[3] |
罗子人, 张敏, 靳刚, 等. 中国空间引力波探测"太极计划"及"太极1号"在轨测试[J]. 深空探测学报, 2020, 7(1): 3-10
LUO Ziren, ZHANG Min, JIN Gang, et al. Introduction of Chinese space-borne gravitational wave detection program "Taiji" and "Taiji-1" satellite mission[J]. Journal of Deep Space Exploration, 2020, 7(1): 3-10
|
[4] |
王坦, 何思译, 徐佳文. 引力波探测中的噪声抑制技术综述[J]. 天文学进展, 2022, 40(4): 556-574 doi: 10.3969/j.issn.1000-8349.2022.04.04
WANG Tan, HE Siyi, XU Jiawen. Review of noise suppressing technologies for gravitational-waves detection[J]. Progress in Astronomy, 2022, 40(4): 556-574 doi: 10.3969/j.issn.1000-8349.2022.04.04
|
[5] |
LUO J, CHEN L S, DUAN H Z, et al. TianQin: a space-borne gravitational wave detector[J]. Classical and Quantum Gravity, 2016, 33(3): 035010 doi: 10.1088/0264-9381/33/3/035010
|
[6] |
DEHNE M, TRÖBS M, HEINZEL G, et al. Verification of polarising optics for the LISA optical bench[J]. Optics Express, 2012, 20(25): 27273-27287 doi: 10.1364/OE.20.027273
|
[7] |
CHEN K, ZHANG X F, GUO T, et al. Key technologies analysis and design of ultra-clean & ultra-stable spacecraft for gravitational wave detection[J]. International Journal of Modern Physics A, 2021, 36(11n12): 2140021 doi: 10.1142/S0217751X21400212
|
[8] |
ZHAO Y Z, BERGMANN J H M. Non-contact infrared thermometers and thermal scanners for human body temperature monitoring: a systematic review[J]. Sensors, 2023, 23(17): 7439 doi: 10.3390/s23177439
|
[9] |
WUDY F E, MOOSBAUER D J, MULTERER M, et al. Fast micro-Kelvin resolution thermometer based on NTC thermistors[J]. Journal of Chemical :Times New Roman;">& Engineering Data, 2011, 56(12): 4823-4828
|
[10] |
LOBO A, NOFRARIAS M, SANJUAN J. Thermal diagnostics for LTP[J]. Classical and Quantum Gravity, 2005, 22(10): S171-S176 doi: 10.1088/0264-9381/22/10/006
|
[11] |
ROMA-DOLLASE D, GUALANI V, GOHLKE M, et al. Resistive-based micro-kelvin temperature resolution for ultra-stable space experiments[J]. Sensors, 2022, 23(1): 145 doi: 10.3390/s23010145
|
[12] |
刘红, 张晓峰, 冯建朝, 等. 精密热控技术在太极一号卫星上的应用[J]. 空间科学学报, 2021, 41(2): 337-341 doi: 10.11728/cjss2021.02.337
LIU Hong, ZHANG Xiaofeng, FENG Jianchao, et al. Application of precision thermal control techniques in Taiji-1 satellite[J]. Chinese Journal of Space Science, 2021, 41(2): 337-341 doi: 10.11728/cjss2021.02.337
|
[13] |
代国红, 许艺铧, 吴庆丰, 等. 基于惠斯通电桥的弯曲应变测量灵敏度研究[J]. 南昌大学学报(理科版), 2022, 46(1): 66-71
DAI Guohong, XU Yihua, WU Qingfeng, et al. Strain measurement sensitivity based on Wheatstone bridge[J]. Journal of Nanchang University (Natural Science), 2022, 46(1): 66-71
|
[14] |
GHOSH S, MUKHERJEE A, SAHOO K, et al. A novel sensitivity enhancement technique employing wheatstone's bridge for strain and temperature measurement[C]//Proceedings of the 2015 Third International Conference on Computer, Communication, Control and Information Technology (C3IT). Hooghly: IEEE, 2015: 1-6
|
[15] |
SANJUÁN J, LOBO A, NOFRARIAS M, et al. Thermal diagnostics front-end electronics for LISA Pathfinder[J]. Review of Scientific Instruments, 2007, 78(10): 104904 doi: 10.1063/1.2800776
|
[16] |
ALEKSIĆ O S, RADOJČIĆ B M, RAMOVIĆ R M. Modeling and simulation of NTC thick film thermistor geometries[J]. Microelectronics International, 2007, 24(1): 27-34 doi: 10.1108/13565360710725919
|
[17] |
SARKAR S. Platinum RTD sensor based multi-channel high-precision temperature measurement system for temperature range −100°C to +100 °C using single quartic function[J]. Cogent Engineering, 2018, 5(1): 1558687 doi: 10.1080/23311916.2018.1558687
|
[18] |
MCCARTHY M, MCCARTHY A. RTD温度测量系统对ADC的要求[J]. 今日电子, 2016(4): 31-33 doi: 10.3969/j.issn.1004-9606.2016.04.005
MCCARTHY M, MCCARTHY A. ADC Requirements for RTD Temperature Measurement Systems[J]. Electronics Today, 2016(4): 31-33 doi: 10.3969/j.issn.1004-9606.2016.04.005
|
[19] |
MENG W J, ZHANG F H, DONG G D, et al. Research on losses of PCB parasitic capacitance for GaN-based full bridge converters[J]. IEEE Transactions on Power Electronics, 2021, 36(4): 4287-4299 doi: 10.1109/TPEL.2020.3024881
|
[20] |
DE GRAAF G, WOLFFENBUTTEL R F. Lock-in amplifier techniques for low-frequency modulated sensor applications[C]//2012 IEEE International Instrumentation and Measurement Technology Conference Proceedings. Graz: IEEE, 2012: 1745-1749
|
[21] |
LIU H, LIU W H. An improved adaptive time difference estimation method based on median filter in impulse environment[J]. International Journal of Information and Communication Sciences, 2021, 6(3): 66-74 doi: 10.11648/j.ijics.20210603.13
|