Citation: | LI Shaowen, NIU Jun, MEI Bing, YAO Lizhu, LI Yanbin. Dst Index Prediction Method Based on LSTM Neural Network (in Chinese). Chinese Journal of Space Science, 2025, 45(3): 641-652 doi: 10.11728/cjss2025.03.2024-0045 |
[1] |
BURTON R K, MCPHERRON R L, RUSSELL C T. An empirical relationship between interplanetary conditions and Dst[J]. Journal of Geophysical Research, 1975, 80(31): 4204-4214 doi: 10.1029/JA080i031p04204
|
[2] |
IYEMORI T, MAEDA H, KAMEI T. Impulse response of geomagnetic indices to interplanetary magnetic field[J]. Journal of Geomagnetism and Geoelectricity, 1979, 31(1): 1-9 doi: 10.5636/jgg.31.1
|
[3] |
彭宇翔, 吕建永, 顾赛菊. 利用支持向量机预测大磁暴期间Dst指数的变化[J]. 空间科学学报, 2016, 36(6): 866-874 doi: 10.11728/cjss2016.06.866
PENG Yuxiang, LÜ Jianyong, GU Saiju. Application of support vector machine to the forecasting of Dst index during geomagnetic storm[J]. Chinese Journal of Space Science, 2016, 36(6): 866-874 doi: 10.11728/cjss2016.06.866
|
[4] |
YATSENKO V O, IVANOV S M, PARNOWSKI A, et al. Guaranteed narmax model for the prediction of geomagnetic Dst index[J]. Journal of Physical Studies, 2019, 23(1): 1901 doi: 10.30970/jps.23.1901
|
[5] |
MYAGKOVA I N, SHIROKII V R, VLADIMIROV R D, et al. Prediction of the Dst geomagnetic index using adaptive methods[J]. Russian Meteorology and Hydrology, 2021, 46(3): 157-162 doi: 10.3103/S1068373921030031
|
[6] |
BEJ A, BANERJEE A, CHATTERJEE T N, et al. One-hour ahead prediction of the Dst index based on the optimum state space reconstruction and pattern recognition[J]. The European Physical Journal Plus, 2022, 137(4): 479 doi: 10.1140/epjp/s13360-022-02687-7
|
[7] |
NILAM B, RAM S T. Forecasting geomagnetic activity (Dst Index) using the ensemble Kalman filter[J]. Monthly Notices of the Royal Astronomical Society, 2022, 511(1): 723-731 doi: 10.1093/mnras/stac099
|
[8] |
吴洪钟, 都亨. 行星际参量和地磁指数相关关系之比较[J]. 空间科学学报, 1986, 6(3): 196-202 doi: 10.11728/cjss1986.03.196
WU Hongzhong, DU Heng. Comparison of the correlations between the interplanetary parameters and geomagnetic indexes[J]. Chinese Journal of Space Science, 1986, 6(3): 196-202 doi: 10.11728/cjss1986.03.196
|
[9] |
LUNDSTEDT H, WINTOFT P. Prediction of geomagnetic storms from solar wind data with the use of a neural network[J]. Annales Geophysicae, 1994, 12(1): 19-24 doi: 10.1007/s00585-994-0019-2
|
[10] |
WU J G, LUNDSTEDT H. Geomagnetic storm predictions from solar wind data with the use of dynamic neural networks[J]. Journal of Geophysical Research: Space Physics, 1997, 102(A7): 14255-14268 doi: 10.1029/97JA00975
|
[11] |
LUNDSTEDT H, GLEISNER H, WINTOFT P. Operational forecasts of the geomagnetic DstDst index[J]. Geophysical Research Letters, 2002, 29(24): 2181
|
[12] |
陈春, 孙树计, 许正文, 等. 利用神经网络技术提前一小时预报Dst指数[J]. 空间科学学报, 2011, 31(2): 182-186 doi: 10.11728/cjss2011.02.182
CHEN Chun, SUN Shuji, XU Zhengwen, et al. Short-term Dst index forecasting method based on neural network techniques[J]. Chinese Journal of Space Science, 2011, 31(2): 182-186 doi: 10.11728/cjss2011.02.182
|
[13] |
BALA R, REIFF P. Improvements in short-term forecasting of geomagnetic activity[J]. Space Weather, 2012, 10(6): S06001
|
[14] |
REVALLO M, VALACH F, HEJDA P, et al. A neural network Dst index model driven by input time histories of the solar wind–magnetosphere interaction[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2014, 110-111: 9-14 doi: 10.1016/j.jastp.2014.01.011
|
[15] |
LAZZÚS J A, VEGA P, ROJAS P, et al. Forecasting the Dst index using a swarm-optimized neural network[J]. Space Weather, 2017, 15(8): 1068-1089 doi: 10.1002/2017SW001608
|
[16] |
GRUET M A, CHANDORKAR M, SICARD A, et al. Multiple-hour-ahead forecast of the Dst index using a combination of long short-term memory neural network and Gaussian process[J]. Space Weather, 2018, 16(11): 1882-1896 doi: 10.1029/2018SW001898
|
[17] |
LAZZÚS J A, VEGA-JORQUERA P, PALMA-CHILLA L, et al. Dst index forecast based on ground-level data aided by bio-inspired algorithms[J]. Space Weather, 2019, 17(10): 1487-1506
|
[18] |
XU S B, HUANG S Y, YUAN Z G, et al. Prediction of the Dst index with Bagging ensemble-learning algorithm[J]. The Astrophysical Journal Supplement Series, 2020, 248(1): 14 doi: 10.3847/1538-4365/ab880e
|
[19] |
PARK W, LEE J, KIM K C, et al. Operational Dst index prediction model based on combination of artificial neural network and empirical model[J]. Journal of Space Weather and Space Climate, 2021, 11(38): 38
|
[20] |
NURAENI F, RUHIMAT M, ARIS M A, et al. Development of 24 hours Dst index prediction from solar wind data and IMF Bz using NARX[J]. Journal of Physics: Conference Series, 2022, 2214: 012024 doi: 10.1088/1742-6596/2214/1/012024
|
[21] |
XU W W, ZHU Y M, ZHU L, et al. A class of Bayesian machine learning model for forecasting Dst during intense geomagnetic storms[J]. Advances in Space Research, 2023, 72(9): 3882-3889 doi: 10.1016/j.asr.2023.07.009
|
[22] |
ZHANG J Y, FENG Y, ZHANG J X, et al. The short time prediction of the Dst index based on the long-short time memory and empirical mode decomposition-long-short time memory models[J]. Applied Sciences, 2023, 13(21): 11824 doi: 10.3390/app132111824
|
[23] |
HU A, CAMPOREALE E, SWIGER B. Multi-hour-ahead Dst index prediction using multi-fidelity boosted neural networks[J]. Space Weather, 2023, 21(4): e2022SW003286 doi: 10.1029/2022SW003286
|
[24] |
NAIR M, REDMON R, YOUNG L Y, et al. MagNet—a data-science competition to predict disturbance storm-time index (Dst) from solar wind data[J]. Space Weather, 2023, 21(10): e2023SW003514 doi: 10.1029/2023SW003514
|
[25] |
CIANCHINI G, PISCINI A, DE SANTIS A, et al. Fast Dst computation by applying deep learning to Swarm satellite magnetic data[J]. Advances in Space Research, 2022, 69(2): 837-855 doi: 10.1016/j.asr.2021.10.051
|
[26] |
RUHIMAT M, NURAENI F, YATINI C Y, et al. Prediction of Dst index by using artificial neural network NARX[J]. AIP Conference Proceedings, 2023, 2941(1): 040006
|
[27] |
LU J Y, PENG Y X, WANG M, et al. Support Vector Machine combined with Distance Correlation learning for Dst forecasting during intense geomagnetic storms[J]. Planetary and Space Science, 2016, 120: 48-55 doi: 10.1016/j.pss.2015.11.004
|
[28] |
LI Y Y, HUANG S Y, XU S B, et al. Selection of the main control parameters for the Dst index prediction model based on a layer-wise relevance propagation method[J]. The Astrophysical Journal Supplement Series, 2022, 260(1): 6 doi: 10.3847/1538-4365/ac616c
|
[29] |
HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780 doi: 10.1162/neco.1997.9.8.1735
|