Turn off MathJax
Article Contents
WANG Wei, WANG Jiqing, JI kaijun, CHENG Xuewu, LIN Xin, YANG Yong, LI Faquan. Detection of Tonga Volcanic Ash Using Middle and Upper Atmospheric Lidar (in Chinese). Chinese Journal of Space Science, 2025, 45(3): 1-7 doi: 10.11728/cjss2025.03.2024-0046
Citation: WANG Wei, WANG Jiqing, JI kaijun, CHENG Xuewu, LIN Xin, YANG Yong, LI Faquan. Detection of Tonga Volcanic Ash Using Middle and Upper Atmospheric Lidar (in Chinese). Chinese Journal of Space Science, 2025, 45(3): 1-7 doi: 10.11728/cjss2025.03.2024-0046

Detection of Tonga Volcanic Ash Using Middle and Upper Atmospheric Lidar

doi: 10.11728/cjss2025.03.2024-0046 cstr: 32142.14.cjss.2024-0046
  • Received Date: 2024-03-23
  • Rev Recd Date: 2024-05-24
  • Available Online: 2024-05-27
  • This study presents the first report of detecting Tonga volcanic ash over Wuhan (30.5°N, 114.3°E) using a middle and upper atmospheric lidar system. The research analyzes the intensity variations of Tonga volcanic ash as it spread over Wuhan from March to July 2022, and also examines the volcanic ash's Aerosol Index (AI). The findings reveal that from March 8 to 7 April 2022, the detected volcanic ash signals were relatively weak. However, starting on April 10, 2022, the lidar detected a sudden increase in the strength of the volcanic ash return signals, which remained consistently strong between altitudes of 20~25 km over the following months. This phenomenon suggests a significant change in the volcanic ash's propagation during this period, which may be closely related to atmospheric flow patterns. Further analysis of the detected volcanic ash heights revealed an uneven, layered structure in the stratosphere, indicating a distinct distribution of volcanic ash at different altitudes. This provides important insights into the mechanisms of volcanic ash propagation in the atmosphere and its environmental impact. Additionally, the lidar data analysis from April to July 2022 shows a weak correlation between the detected volcanic ash altitude and the particle size. This suggests that the movement and settling behavior of volcanic ash particles are likely influenced by various complex factors, rather than being governed solely by their size.

     

  • loading
  • [1]
    SALIKHOV N, SHEPETOV A, PAK G, et al. Disturbances of Doppler frequency shift of ionospheric signal and of telluric current caused by atmospheric waves from explosive eruption of Hunga Tonga Volcano on January 15, 2022[J]. Atmosphere, 2023, 14(2): 245. doi: 10.3390/atmos14020245
    [2]
    PRADIPTA R, CARTER B A, CURRIE J L, et al. On the propagation of traveling ionospheric disturbances From the Hunga Tonga-Hunga Ha'apai volcano eruption and their possible connection with Tsunami waves[J]. Geophysical Research Letters, 2023, 50(6): e2022GL101925. doi: 10.1029/2022gl101925
    [3]
    DOLGIKH G I, DOLGIKH S G, OVCHARENKO V V. Atmospheric and deformation disturbances caused by the Hunga-Tonga-Hunga-Ha'apai Volcano[J]. Doklady Earth Sciences, 2022, 505(2): 575-577. doi: 10.1134/s1028334x22080074
    [4]
    DENAMIEL C, VASYLKEVYCH S, ŽAGAR N, et al. Destructive potential of planetary Meteotsunami Waves beyond the Hunga Tonga-Hunga Ha'apai Volcano eruption[J]. Bulletin of the American Meteorological Society, 2023, 104(1): E178-E191. doi: 10.1175/bams-d-22-0164.1
    [5]
    RAMÍREZ-HERRERA M T, COCA O, VARGAS-ESPINOSA V. Tsunami effects on the coast of Mexico by the Hunga Tonga-Hunga Ha'apai Volcano eruption, Tonga[J]. Pure and Applied Geophysics, 2022, 179(4): 1117-1137. doi: 10.1007/s00024-022-03017-9
    [6]
    GAVRILOV B G, POKLAD Y V, RYAKHOVSKY I A, et al. Global electromagnetic disturbances caused by the eruption of the Tonga Volcano on 15 January 2022[J]. Journal of Geophysical Research: Atmospheres, 2022, 127(23): e2022JD037411. doi: 10.1029/2022jd037411
    [7]
    THOMPSON D W J, WALLACE J M, JONES D, et al. Identifying signatures of natural climate variability in time series of global-mean surface temperature: methodology and insights[J]. Journal of Climate, 2009, 22(22): 6120-6141. doi: 10.1175/2009jcli3089.1
    [8]
    MADONIA P, BONACCORSO A, BONFORTE A, et al. Propagation of perturbations in the lower and upper atmosphere over the central Mediterranean, Driven by the 15 January 2022 Hunga Tonga-Hunga Ha'apai Volcano explosion[J]. Atmosphere, 2023, 14(1): 65. doi: 10.3390/atmos14010065
    [9]
    TAHA G, LOUGHMAN R, COLARCO R, et al. Tracking the 2022 Hunga Tonga-Hunga Ha'apai aerosol cloud in the upper and middle stratosphere using space-based observations[J]. Geophysical Research Letters, 2022, 49(19): e2022GL100091. doi: 10.1029/2022gl100091
    [10]
    SOLOVIEVA M S, SHALIMOV S L. Disturbances in the Lower Ionosphere after the Eruption of the Hunga-Tonga-Hunga-Ha'apai Volcano on January 15, 2022, Recorded by the Subionospheric VLF Radio Signals[J]. Doklady Earth Sciences, 2022, 507(2): 1080-1084. doi: 10.1134/s1028334x22600840
    [11]
    RAJESH K, LIN C C H, LIN J T, et al. Extreme poleward expanding super plasma bubbles over Asia-Pacific region triggered by Tonga volcano eruption during the recovery-phase of geomagnetic storm[J]. Geophysical Research Letters, 2022, 49(15): e2022GL099798. doi: 10.1029/2022gl099798
    [12]
    LIN J T, RAJESH P K, LIN C C H, et al. Rapid conjugate appearance of the Giant Ionospheric lamb wave signatures in the Northern hemisphere After Hunga-Tonga Volcano eruptions[J]. Geophysical Research Letters, 2022, 49(8): e2022GL098222. doi: 10.1029/2022gl098222
    [13]
    LIU X, XU J Y, YUE J, et al. Strong gravity waves associated with Tonga volcano eruption revealed by SABER observations[J]. Geophysical Research Letters, 2022, 49(10): e2022GL098339. doi: 10.1029/2022gl098339
    [14]
    KULICHKOV S N, CHUNCHUZOV I P, POPOV O E, et al. Acoustic-gravity lamb waves from the eruption of the Hunga-Tonga-Hunga-Hapai Volcano, its energy release and impact on aerosol concentrations and Tsunami[J]. Pure and Applied Geophysics, 2022, 179(5): 1533-1548. doi: 10.1007/s00024-022-03046-4
    [15]
    DOLGIKH G, DOLGIKH S, OVCHARENKO V. Initiation of infrasonic geosphere waves caused by explosive eruption of Hunga Tonga-Hunga Haʻapai Volcano[J]. Journal of Marine Science and Engineering, 2022, 10(8): 10611. doi: 10.3390/jmse10081061
    [16]
    程学武, 宋娟, 李发泉, 等. 双波长高空探测激光雷达技术[J]. 中国激光, 2006, 33(5): 601-606 doi: 10.3321/j.issn:0258-7025.2006.05.006

    CHENG Xuewu, SONG Juan, LI Faquan, et al. Dual-wavelength high altitude detecting Lidar technology[J]. Chinese Journal of Lasers, 2006, 33(5): 601-606 doi: 10.3321/j.issn:0258-7025.2006.05.006
    [17]
    NAKAMAE K, UCHINO O, MORINO I, et al. Lidar observation of the 2011 Puyehue-Cordón Caulle volcanic aerosols at Lauder, New Zealand[J]. Atmospheric Chemistry and Physics, 2014, 14(22): 12099-12108. doi: 10.5194/acp-14-12099-2014
    [18]
    JUNG C H, KIM Y P. Simplified analytic model to estimate the ångstrom exponent in a Junge Aerosol size distribution[J]. Environmental Engineering Science, 2010, 27(9): 789-795. doi: 10.1089/ees.2010.0030
    [19]
    ZHUANG J, YI F. Nabro aerosol evolution observed jointly by lidars at a mid-latitude site and CALIPSO[J]. Atmospheric Environment, 2016, 140: 106-116. doi: 10.1016/j.atmosenv.2016.05.048
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article Metrics

    Article Views(283) PDF Downloads(22) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return