Citation: | ZHANG Jing, ZHOU Biyun, NIE Jiachen, DONG Xianpeng, DING Li. Advances in the Study of the Musculoskeletal Multi-rigid-body Dynamic Modeling in Manned Space Flight (in Chinese). Chinese Journal of Space Science, 2025, 45(3): 776-787 doi: 10.11728/cjss2025.03.2024-0163 |
[1] |
LEE P H U, CHUNG M, REN Z P, et al. Factors mediating spaceflight-induced skeletal muscle atrophy[J]. American Journal of Physiology Cell Physiology, 2022, 322(3): C567-C580. doi: 10.1152/ajpcell.00203.2021
|
[2] |
KELLER T S, STRAUSS A M, SZPALSKI M. Prevention of bone loss and muscle atrophy during manned space flight[J]. Microgravity Quarterly: MGQ, 1992, 2(2): 89-102
|
[3] |
DAI Z Q, LEI X H, YANG C, et al. Systematic biomedical research of the NASA Twins Study facilitates the hazard risk assessment of long-term spaceflight missions[J]. Protein :Times New Roman;">& Cell, 2019, 10(9): 628-630. doi: 10.1007/s13238-019-0628-x
|
[4] |
TANAKA K, NISHIMURA N, KAWAI Y. Adaptation to microgravity, deconditioning, and countermeasures[J]. The Journal of Physiological Sciences: JPS, 2017, 67(2): 271-281. doi: 10.1007/s12576-016-0514-8
|
[5] |
HARGENS A R, BHATTACHARYA R, SCHNEIDER S M. Space physiology VI: exercise, artificial gravity, and countermeasure development for prolonged space flight[J]. European Journal of Applied Physiology, 2013, 113(9): 2183-2192. doi: 10.1007/s00421-012-2523-5
|
[6] |
NASA. Lunar surface operations modeling using digital astronaut simulation - nasa technical reports server (NTRS)[EB/OL]. (2021-03-30)[2024-11-08]. https://ntrs.nasa.gov/citations/20210011091
|
[7] |
QAISAR R, KARIM A, ELMOSELHI A B. Muscle unloading: A comparison between spaceflight and ground-based models[J]. Acta Physiologica (Oxford, England), 2020, 228(3): e13431. doi: 10.1111/apha.13431
|
[8] |
SINATRA M, QUARANTA M. Biomechanical model and machine learning algorithms comparison for customized training biofeedback on ISS[EB/OL]. (2021-04-28)[2024-10-07]. https://www.politesi.polimi.it/handle/10589/173951
|
[9] |
PORTER A P. Design of soft knee exoskeleton and modeling effects of variable stiffness for advanced space suits and planetary exploration[D/OL]. Massachusetts Institute of Technology, (2020)[2024-10-08]. https://dspace.mit.edu/handle/1721.1/129135
|
[10] |
LEWANDOWSKI B E, PENNLINE J A, STALKER A R, et al. Musculoskeletal modeling component of the NASA digital astronaut project[Z/OL]. (2011-04-11)[2024-10-06]. https://ntrs.nasa.gov/citations/20110011357
|
[11] |
GALLO C A, THOMPSON W K, LEWANDOWSKI B E, et al. Computational modeling using OpenSim to simulate a squat exercise motion[Z/OL]. (2015-01-13)[2024-10-06]. https://ntrs.nasa.gov/citations/20150002700
|
[12] |
陈善广, 姜国华, 王春慧. 航天人因工程研究进展[J]. 载人航天, 2015(2): 11 doi: 10.3969/j.issn.1674-5825.2015.02.001
CHEN Shanguang, JIANG Guohua, WANG Chunhui. Advancement in Space Human Factors Engineering[J]. Manned Spaceflight, 2015(2): 11 doi: 10.3969/j.issn.1674-5825.2015.02.001
|
[13] |
LETIER P, FAU G, MITTAG U, et al. SOLEUS: ankle foot orthosis for space countermeasure with immersive virtual reality[C]//Proceedings of the 2nd International Symposium on Wearable Robotics. Segovia: Springer, 2016: 305-309
|
[14] |
GUO N, FAN X Y, WU Y T, et al. Effect of constraint loading on the lower limb muscle forces in weightless treadmill exercise[J]. Journal of Healthcare Engineering, 2018, 2018: 8487308. doi: 10.1155/2018/8487308
|
[15] |
LI H, JIN Y, WANG C H. Modeling and simulation of astronaut motions during extravehicular activity: a complex system based method[J]. AASRI Procedia, 2012, 3: 118-126. doi: 10.1016/j.aasri.2012.11.021
|
[16] |
SRIDHAR S, STETZ E, MCFARLAND S M, et al. Space suit and portable life support system center of gravity influence on astronaut kinematics, exertion and efficiency[C]// 47th International Conference on Environmental Systems, 2017
|
[17] |
DIAZ A, NEWMAN D. Musculoskeletal human-spacesuit interaction model[C]//2014 IEEE Aerospace Conference. Big Sky: IEEE, 2014: 1-13
|
[18] |
LI J W, YE Q, DING L, et al. Modeling and dynamic simulation of astronaut’s upper limb motions considering counter torques generated by the space suit[J]. Computer Methods in Biomechanics and Biomedical Engineering, 2017, 20(9): 929-940. doi: 10.1080/10255842.2017.1310850
|
[19] |
DAMSGAARD M, RASMUSSEN J, CHRISTENSEN S T, et al. Analysis of musculoskeletal systems in the anybody modeling system[J]. Simulation Modelling Practice and Theory, 2006, 14(8): 1100-1111. doi: 10.1016/j.simpat.2006.09.001
|
[20] |
DELP S L, ANDERSON F C, ARNOLD A S, et al. OpenSim: open-source software to create and analyze dynamic simulations of movement[J]. IEEE Transactions on Bio-medical Engineering, 2007, 54(11): 1940-1950. doi: 10.1109/TBME.2007.901024
|
[21] |
ANDERSEN M S, RASMUSSEN J. Chapter 7 - AnyBody modeling system[M]//PAUL G, HAMDY DOWEIDAR M. Digital Human Modeling and Medicine. London: Academic Press, 2023: 143-159
|
[22] |
RASMUSSEN J. Chapter 8 - The AnyBody modeling system[M]//SCATAGLINI S, PAUL G. DHM and Posturography. London: Academic Press, 2019: 85-96
|
[23] |
LI H, WANG C, WANG Z, et al. Analysis of the applicability of the anybody modeling system in microgravity environment[C]//Proceedings of the 64th International Astronautical Congress. Beijing: IAC, 2013, 1: 98-103
|
[24] |
JESSUP L N, KELLY L A, CRESSWELL A G, et al. Validation of a musculoskeletal model for simulating muscle mechanics and energetics during diverse human hopping tasks[J]. Royal Society Open Science, 2023, 10(10): 230393. doi: 10.1098/rsos.230393
|
[25] |
Standard for models and simulations[EB/OL]. [2024-11-12]. https://standards.nasa.gov/standard/nasa/nasa-std-7009
|
[26] |
NASA handbook for models and simulations: an implementation guide for NASA-STD-7009[EB/OL]. [2024-11-12]. https://standards.nasa.gov/standard/nasa/nasa-hdbk-7009
|
[27] |
GALLO C A, PERKINS R A, IVANOFF, A E, et al. Modeling and simulation credibility assessments of musculoskeletal computational models for simulating astronaut injuries due to a poor spacesuit fit - NASA Technical Reports Server (NTRS)[EB/OL]. [2024-11-13]. https://ntrs.nasa.gov/citations/20240011014
|
[28] |
CURRELI C, DI PUCCIO F, DAVICO G, et al. Using musculoskeletal models to estimate in vivo total knee replacement kinematics and loads: effect of differences between models[J]. Frontiers in Bioengineering and Biotechnology, 2021, 9: 703508. doi: 10.3389/fbioe.2021.703508
|
[29] |
LINDENROTH L, CAPLAN N, DEBUSE D, et al. A novel approach to activate deep spinal muscles in space—Results of a biomechanical model[J]. Acta Astronautica, 2015, 116: 202-210. doi: 10.1016/j.actaastro.2015.07.012
|
[30] |
HAJJ-BOUTROS G, SONJAK V, FAUST A, et al. Impact of 14 days of bed rest in older adults and an exercise countermeasure on body composition, muscle strength, and cardiovascular function: Canadian space agency standard measures[J]. Gerontology, 2023, 69(11): 1284-1294. doi: 10.1159/000534063
|
[31] |
FREGLY B J, FREGLY C D, KIM B T. Computational prediction of muscle moments during ared squat exercise on the international space station[J]. Journal of Biomechanical Engineering, 2015, 137(12): 121005. doi: 10.1115/1.4031795
|
[32] |
JAGODNIK K M, THOMPSON W K, GALLO C A, et al. Biomechanical modeling of the deadlift exercise on the HULK device to improve the efficacy of resistive exercise microgravity countermeasures[Z/OL]. (2016-02-08)[2024-11-14]. https://ntrs.nasa.gov/citations/20170000665
|
[33] |
任启超. 正常重力环境下人体下肢力学特性研究[D]. 太原: 太原理工大学, 2017
REN Qichao. Study on Mechanical Properties of Human Lower Limbs Under Normal Gravity[D]. Taiyuan: Taiyuan University of Technology, 2017
|
[34] |
HUMPHREYS B T, THOMPSON W K, LEWANDOWSKI B E, et al. Development of a high fidelity dynamic module of the advanced resistive exercise device (ARED) using adams[Z/OL]. (2012-02-14)[2024-11-14]. https://ntrs.nasa.gov/citations/20150010126
|
[35] |
邹宇鹏. 多模式柔索驱动航天员训练机器人控制研究[D]. 哈尔滨: 哈尔滨工程大学, 2014
ZOU Yupeng. Research on Control of Multimodal Cable Driven Astronaut Training Robot[D]. Harbin: Harbin Engineering University, 2014
|
[36] |
BÄRLIGEA A, HASE K, YOSHIDA M. Simulation of human movement in zero gravity[J]. Sensors, 2024, 24(6): 1770. doi: 10.3390/s24061770
|
[37] |
WU B, GAO X, QIN B, et al. Effect of microgravity on mechanical loadings in lumbar spine at various postures: a numerical study[J]. NPJ microgravity, 2023, 9(1): 16. doi: 10.1038/s41526-023-00253-8
|
[38] |
LEWANDOWSKI B E, PENNLINE J A, THOMPSON W K, et al. Development of the NASA digital astronaut project muscle model[Z/OL]. (2015-01-13)[2024-11-14]. https://ntrs.nasa.gov/citations/20150004110
|
[39] |
SCHAFFNER G, NEWMAN D J, ROBINSON S K. Computational simulation of extravehicular activity dynamics during a satellite capture attempt[J]. Journal of Guidance, Control, and Dynamics: A Publication of the American Institute of Aeronautics and Astronautics Devoted to the Technology of Dynamics and Control, 2000, 23(2): 367-369. doi: 10.2514/2.4533
|
[40] |
SCHMIDT P B. An investigation of space suit mobility with applications to EVA operations[D/OL]. Massachusetts Institute of Technology, 2001[2024-11-14]. https://dspace.mit.edu/handle/1721.1/8105
|
[41] |
王晓东, 王政, 李昊, 等. 面向出舱活动的典型功能操作肌肉激活预测[J]. 载人航天, 2015, 21(5): 510-515 doi: 10.3969/j.issn.1674-5825.2015.05.014
WANG Xiaodong, WANG Zheng, LI Hao, et al. Predicting muscle activation in typical functional tasks of EVA[J]. Manned Spaceflight, 2015, 21(5): 510-515 doi: 10.3969/j.issn.1674-5825.2015.05.014
|
[42] |
何剑. 航天服上肢关节人服耦合特性研究[D]. 湘潭: 湘潭大学, 2020
HE Jian. Research on Human-Suit Coupling Characteristics Based on Upper Limb of Spacesuit[D]. Xiangtan: Xiangtan University, 2020
|
[43] |
BURKHART K A, ANDERSON D E, STIRLING L. Estimating compressive spinal loads due to planetary space suits[C]// 2020 International Conference on Environmental Systems, 2020
|
[44] |
李希源, 张建军, 艾存金, 等. 重物质心自适应调节背负外骨骼负重性能分析[J]. 振动工程学报, 2024, 37(8): 1299-1307
LI Xiyuan, ZHANG Jianjun, AI Cunjin, et al. Load-bearing performance analysis of backpack exoskeleton with adaptive adjustment of the weight-gravity center[J]. Journal of Vibration Engineering, 2024, 37(8): 1299-1307
|
[45] |
LOSTROSCIO K H, QUIOCHO L J, HUFFMAN K, et al. Lunar surface operations modeling using digital astronaut simulation[Z/OL]. (2021-03-30)[2024-11-14]. https://ntrs.nasa.gov/citations/20210011091
|
[46] |
ZHANG J, ZHOU R, LI J, et al. Optimization for lunar mission training scheme based on anybody software[M]//DUFFY V G. Digital Human Modeling and Applications in Health, Safety, Ergonomics, and Risk Management. Human Body Modeling and Ergonomics. Berlin, Heidelberg: Springer, 2013: 169-178. DOI: 10.1007/978-3-642-39182-8_20
|
[47] |
乔兵, 陈卓鹏. 航天员低重力步行训练被动外骨骼机器人模拟[J]. 宇航学报, 2014, 35(4): 474-480
QIAO Bing, CHEN Zhuopeng. A passive exoskeleton robotic simulator for reduced-gravity locomotion training of astronaut[J]. Journal of Astronautics, 2014, 35(4): 474-480
|
[48] |
KUMAR K, SHAH M, LI Y, et al. Electrically-actuated jumping exoskeleton for lunar locomotion[C]// 2024 Regional Student Conferences. 2024: 84209. https://doi.org/10.2514/6.2024-84209
|
[49] |
KLUIS L, KELLER N, BAI H, et al. Reducing metabolic cost during planetary ambulation using robotic actuation[J]. Aerospace Medicine and Human Performance, 2021, 92(7): 570-578. doi: 10.3357/AMHP.5754.2021
|
[50] |
周泽世, 朱钧, 朱云超, 等. 下肢外骨骼人机耦合交互力特性分析[J]. 医用生物力学, 2022, 37(2): 305-311
Zhou Zeshi, ZHU Jun, ZHU Yunchao, et al. Characteristic analysis on human-machine interaction force of lower limb exoskeleton[J]. Journal of Medical Biomechanics, 2022, 37(2): 305-311
|
[51] |
乔俊淋, 郑德维, 胡梓惟, 等. 助力外骨骼机器人结构设计与运动学建模分析[J]. 机械设计, 2024, 41(1): 21-27
QIAO Junlin, ZHENG Dewei, Hu Ziwei, et al. Structural design and kinematics modeling analysis of power-assisted exoskeleton robot[J]. Journal of Machine Design, 2024, 41(1): 21-27
|