Turn off MathJax
Article Contents
ZHANG Jing, ZHOU Biyun, NIE Jiachen, DONG Xianpeng, DING Li. Advances in the Study of the Musculoskeletal Multi-rigid-body Dynamic Modeling in Manned Space Flight (in Chinese). Chinese Journal of Space Science, 2025, 45(3): 776-787 doi: 10.11728/cjss2025.03.2024-0163
Citation: ZHANG Jing, ZHOU Biyun, NIE Jiachen, DONG Xianpeng, DING Li. Advances in the Study of the Musculoskeletal Multi-rigid-body Dynamic Modeling in Manned Space Flight (in Chinese). Chinese Journal of Space Science, 2025, 45(3): 776-787 doi: 10.11728/cjss2025.03.2024-0163

Advances in the Study of the Musculoskeletal Multi-rigid-body Dynamic Modeling in Manned Space Flight

doi: 10.11728/cjss2025.03.2024-0163 cstr: 32142.14.cjss.2024-0163
  • Received Date: 2024-11-15
  • Rev Recd Date: 2025-04-29
  • Available Online: 2025-04-29
  • With the advancement of China’s manned space program from near-Earth space to deep space exploration, the protection of astronauts against musculoskeletal injuries during long-duration space missions and their adaptation to low-gravity environments during extraterrestrial exploration have become critical issues concerning astronaut health and safety. To address the limitations of ground-based experiments in studying human motion and musculoskeletal system responses in microgravity/low-gravity environments, musculoskeletal system modeling and simulation technologies, based on biomechanical principles and computer-aided design, have emerged as novel methods and tools for evaluating astronaut exercise regimens and analyzing the kinematics and dynamics of microgravity/low-gravity environments. This paper introduces the principles of musculoskeletal system multi-rigid-body dynamics modeling in space environments, including forward dynamics-driven and inverse dynamics analysis methods. Taking OpenSim software as an instance, this paper elaborates on the procedure of constructing human-device-environment models in microgravity/low-gravity environments and the solution of muscle forces and joint torques via inverse kinematics and inverse dynamics algorithms. Furthermore, to assess the credibility of musculoskeletal modeling and simulation methods for manned spaceflight research, the relationship between experiments and modeling/simulation is analyzed. Based on existing literature, credibility assessment is conducted from eight factors: data pedigrees, input pedigrees, code verification, solution verification, conceptual validation, reference validation, results uncertainty, and results robustness. On this basis, the application of musculoskeletal system dynamics modeling and simulation methods in three key areas is reviewed as follows: assisting astronauts in space exercise by comparing the advantages and disadvantages of different exercise regimens and designing space station-compatible exercise equipment; optimizing extravehicular spacesuit design by calculating joint reaction torques through human-spacesuit coupling biomechanical models and improving spacesuit design to enhance comfort and work performance; and supporting extraterrestrial exploration by focusing on research into human motion characteristics in low-gravity environments and the development of human-spacesuit-exoskeleton systems to confirm the effectiveness of exoskeleton systems in planetary exploration. Finally, the limitations of musculoskeletal system multi-rigid-body modeling and simulation methods are analyzed, and new perspectives on future research directions and application prospects are proposed.

     

  • loading
  • [1]
    LEE P H U, CHUNG M, REN Z P, et al. Factors mediating spaceflight-induced skeletal muscle atrophy[J]. American Journal of Physiology Cell Physiology, 2022, 322(3): C567-C580. doi: 10.1152/ajpcell.00203.2021
    [2]
    KELLER T S, STRAUSS A M, SZPALSKI M. Prevention of bone loss and muscle atrophy during manned space flight[J]. Microgravity Quarterly: MGQ, 1992, 2(2): 89-102
    [3]
    DAI Z Q, LEI X H, YANG C, et al. Systematic biomedical research of the NASA Twins Study facilitates the hazard risk assessment of long-term spaceflight missions[J]. Protein :Times New Roman;">& Cell, 2019, 10(9): 628-630. doi: 10.1007/s13238-019-0628-x
    [4]
    TANAKA K, NISHIMURA N, KAWAI Y. Adaptation to microgravity, deconditioning, and countermeasures[J]. The Journal of Physiological Sciences: JPS, 2017, 67(2): 271-281. doi: 10.1007/s12576-016-0514-8
    [5]
    HARGENS A R, BHATTACHARYA R, SCHNEIDER S M. Space physiology VI: exercise, artificial gravity, and countermeasure development for prolonged space flight[J]. European Journal of Applied Physiology, 2013, 113(9): 2183-2192. doi: 10.1007/s00421-012-2523-5
    [6]
    NASA. Lunar surface operations modeling using digital astronaut simulation - nasa technical reports server (NTRS)[EB/OL]. (2021-03-30)[2024-11-08]. https://ntrs.nasa.gov/citations/20210011091
    [7]
    QAISAR R, KARIM A, ELMOSELHI A B. Muscle unloading: A comparison between spaceflight and ground-based models[J]. Acta Physiologica (Oxford, England), 2020, 228(3): e13431. doi: 10.1111/apha.13431
    [8]
    SINATRA M, QUARANTA M. Biomechanical model and machine learning algorithms comparison for customized training biofeedback on ISS[EB/OL]. (2021-04-28)[2024-10-07]. https://www.politesi.polimi.it/handle/10589/173951
    [9]
    PORTER A P. Design of soft knee exoskeleton and modeling effects of variable stiffness for advanced space suits and planetary exploration[D/OL]. Massachusetts Institute of Technology, (2020)[2024-10-08]. https://dspace.mit.edu/handle/1721.1/129135
    [10]
    LEWANDOWSKI B E, PENNLINE J A, STALKER A R, et al. Musculoskeletal modeling component of the NASA digital astronaut project[Z/OL]. (2011-04-11)[2024-10-06]. https://ntrs.nasa.gov/citations/20110011357
    [11]
    GALLO C A, THOMPSON W K, LEWANDOWSKI B E, et al. Computational modeling using OpenSim to simulate a squat exercise motion[Z/OL]. (2015-01-13)[2024-10-06]. https://ntrs.nasa.gov/citations/20150002700
    [12]
    陈善广, 姜国华, 王春慧. 航天人因工程研究进展[J]. 载人航天, 2015(2): 11 doi: 10.3969/j.issn.1674-5825.2015.02.001

    CHEN Shanguang, JIANG Guohua, WANG Chunhui. Advancement in Space Human Factors Engineering[J]. Manned Spaceflight, 2015(2): 11 doi: 10.3969/j.issn.1674-5825.2015.02.001
    [13]
    LETIER P, FAU G, MITTAG U, et al. SOLEUS: ankle foot orthosis for space countermeasure with immersive virtual reality[C]//Proceedings of the 2nd International Symposium on Wearable Robotics. Segovia: Springer, 2016: 305-309
    [14]
    GUO N, FAN X Y, WU Y T, et al. Effect of constraint loading on the lower limb muscle forces in weightless treadmill exercise[J]. Journal of Healthcare Engineering, 2018, 2018: 8487308. doi: 10.1155/2018/8487308
    [15]
    LI H, JIN Y, WANG C H. Modeling and simulation of astronaut motions during extravehicular activity: a complex system based method[J]. AASRI Procedia, 2012, 3: 118-126. doi: 10.1016/j.aasri.2012.11.021
    [16]
    SRIDHAR S, STETZ E, MCFARLAND S M, et al. Space suit and portable life support system center of gravity influence on astronaut kinematics, exertion and efficiency[C]// 47th International Conference on Environmental Systems, 2017
    [17]
    DIAZ A, NEWMAN D. Musculoskeletal human-spacesuit interaction model[C]//2014 IEEE Aerospace Conference. Big Sky: IEEE, 2014: 1-13
    [18]
    LI J W, YE Q, DING L, et al. Modeling and dynamic simulation of astronaut’s upper limb motions considering counter torques generated by the space suit[J]. Computer Methods in Biomechanics and Biomedical Engineering, 2017, 20(9): 929-940. doi: 10.1080/10255842.2017.1310850
    [19]
    DAMSGAARD M, RASMUSSEN J, CHRISTENSEN S T, et al. Analysis of musculoskeletal systems in the anybody modeling system[J]. Simulation Modelling Practice and Theory, 2006, 14(8): 1100-1111. doi: 10.1016/j.simpat.2006.09.001
    [20]
    DELP S L, ANDERSON F C, ARNOLD A S, et al. OpenSim: open-source software to create and analyze dynamic simulations of movement[J]. IEEE Transactions on Bio-medical Engineering, 2007, 54(11): 1940-1950. doi: 10.1109/TBME.2007.901024
    [21]
    ANDERSEN M S, RASMUSSEN J. Chapter 7 - AnyBody modeling system[M]//PAUL G, HAMDY DOWEIDAR M. Digital Human Modeling and Medicine. London: Academic Press, 2023: 143-159
    [22]
    RASMUSSEN J. Chapter 8 - The AnyBody modeling system[M]//SCATAGLINI S, PAUL G. DHM and Posturography. London: Academic Press, 2019: 85-96
    [23]
    LI H, WANG C, WANG Z, et al. Analysis of the applicability of the anybody modeling system in microgravity environment[C]//Proceedings of the 64th International Astronautical Congress. Beijing: IAC, 2013, 1: 98-103
    [24]
    JESSUP L N, KELLY L A, CRESSWELL A G, et al. Validation of a musculoskeletal model for simulating muscle mechanics and energetics during diverse human hopping tasks[J]. Royal Society Open Science, 2023, 10(10): 230393. doi: 10.1098/rsos.230393
    [25]
    Standard for models and simulations[EB/OL]. [2024-11-12]. https://standards.nasa.gov/standard/nasa/nasa-std-7009
    [26]
    NASA handbook for models and simulations: an implementation guide for NASA-STD-7009[EB/OL]. [2024-11-12]. https://standards.nasa.gov/standard/nasa/nasa-hdbk-7009
    [27]
    GALLO C A, PERKINS R A, IVANOFF, A E, et al. Modeling and simulation credibility assessments of musculoskeletal computational models for simulating astronaut injuries due to a poor spacesuit fit - NASA Technical Reports Server (NTRS)[EB/OL]. [2024-11-13]. https://ntrs.nasa.gov/citations/20240011014
    [28]
    CURRELI C, DI PUCCIO F, DAVICO G, et al. Using musculoskeletal models to estimate in vivo total knee replacement kinematics and loads: effect of differences between models[J]. Frontiers in Bioengineering and Biotechnology, 2021, 9: 703508. doi: 10.3389/fbioe.2021.703508
    [29]
    LINDENROTH L, CAPLAN N, DEBUSE D, et al. A novel approach to activate deep spinal muscles in space—Results of a biomechanical model[J]. Acta Astronautica, 2015, 116: 202-210. doi: 10.1016/j.actaastro.2015.07.012
    [30]
    HAJJ-BOUTROS G, SONJAK V, FAUST A, et al. Impact of 14 days of bed rest in older adults and an exercise countermeasure on body composition, muscle strength, and cardiovascular function: Canadian space agency standard measures[J]. Gerontology, 2023, 69(11): 1284-1294. doi: 10.1159/000534063
    [31]
    FREGLY B J, FREGLY C D, KIM B T. Computational prediction of muscle moments during ared squat exercise on the international space station[J]. Journal of Biomechanical Engineering, 2015, 137(12): 121005. doi: 10.1115/1.4031795
    [32]
    JAGODNIK K M, THOMPSON W K, GALLO C A, et al. Biomechanical modeling of the deadlift exercise on the HULK device to improve the efficacy of resistive exercise microgravity countermeasures[Z/OL]. (2016-02-08)[2024-11-14]. https://ntrs.nasa.gov/citations/20170000665
    [33]
    任启超. 正常重力环境下人体下肢力学特性研究[D]. 太原: 太原理工大学, 2017

    REN Qichao. Study on Mechanical Properties of Human Lower Limbs Under Normal Gravity[D]. Taiyuan: Taiyuan University of Technology, 2017
    [34]
    HUMPHREYS B T, THOMPSON W K, LEWANDOWSKI B E, et al. Development of a high fidelity dynamic module of the advanced resistive exercise device (ARED) using adams[Z/OL]. (2012-02-14)[2024-11-14]. https://ntrs.nasa.gov/citations/20150010126
    [35]
    邹宇鹏. 多模式柔索驱动航天员训练机器人控制研究[D]. 哈尔滨: 哈尔滨工程大学, 2014

    ZOU Yupeng. Research on Control of Multimodal Cable Driven Astronaut Training Robot[D]. Harbin: Harbin Engineering University, 2014
    [36]
    BÄRLIGEA A, HASE K, YOSHIDA M. Simulation of human movement in zero gravity[J]. Sensors, 2024, 24(6): 1770. doi: 10.3390/s24061770
    [37]
    WU B, GAO X, QIN B, et al. Effect of microgravity on mechanical loadings in lumbar spine at various postures: a numerical study[J]. NPJ microgravity, 2023, 9(1): 16. doi: 10.1038/s41526-023-00253-8
    [38]
    LEWANDOWSKI B E, PENNLINE J A, THOMPSON W K, et al. Development of the NASA digital astronaut project muscle model[Z/OL]. (2015-01-13)[2024-11-14]. https://ntrs.nasa.gov/citations/20150004110
    [39]
    SCHAFFNER G, NEWMAN D J, ROBINSON S K. Computational simulation of extravehicular activity dynamics during a satellite capture attempt[J]. Journal of Guidance, Control, and Dynamics: A Publication of the American Institute of Aeronautics and Astronautics Devoted to the Technology of Dynamics and Control, 2000, 23(2): 367-369. doi: 10.2514/2.4533
    [40]
    SCHMIDT P B. An investigation of space suit mobility with applications to EVA operations[D/OL]. Massachusetts Institute of Technology, 2001[2024-11-14]. https://dspace.mit.edu/handle/1721.1/8105
    [41]
    王晓东, 王政, 李昊, 等. 面向出舱活动的典型功能操作肌肉激活预测[J]. 载人航天, 2015, 21(5): 510-515 doi: 10.3969/j.issn.1674-5825.2015.05.014

    WANG Xiaodong, WANG Zheng, LI Hao, et al. Predicting muscle activation in typical functional tasks of EVA[J]. Manned Spaceflight, 2015, 21(5): 510-515 doi: 10.3969/j.issn.1674-5825.2015.05.014
    [42]
    何剑. 航天服上肢关节人服耦合特性研究[D]. 湘潭: 湘潭大学, 2020

    HE Jian. Research on Human-Suit Coupling Characteristics Based on Upper Limb of Spacesuit[D]. Xiangtan: Xiangtan University, 2020
    [43]
    BURKHART K A, ANDERSON D E, STIRLING L. Estimating compressive spinal loads due to planetary space suits[C]// 2020 International Conference on Environmental Systems, 2020
    [44]
    李希源, 张建军, 艾存金, 等. 重物质心自适应调节背负外骨骼负重性能分析[J]. 振动工程学报, 2024, 37(8): 1299-1307

    LI Xiyuan, ZHANG Jianjun, AI Cunjin, et al. Load-bearing performance analysis of backpack exoskeleton with adaptive adjustment of the weight-gravity center[J]. Journal of Vibration Engineering, 2024, 37(8): 1299-1307
    [45]
    LOSTROSCIO K H, QUIOCHO L J, HUFFMAN K, et al. Lunar surface operations modeling using digital astronaut simulation[Z/OL]. (2021-03-30)[2024-11-14]. https://ntrs.nasa.gov/citations/20210011091
    [46]
    ZHANG J, ZHOU R, LI J, et al. Optimization for lunar mission training scheme based on anybody software[M]//DUFFY V G. Digital Human Modeling and Applications in Health, Safety, Ergonomics, and Risk Management. Human Body Modeling and Ergonomics. Berlin, Heidelberg: Springer, 2013: 169-178. DOI: 10.1007/978-3-642-39182-8_20
    [47]
    乔兵, 陈卓鹏. 航天员低重力步行训练被动外骨骼机器人模拟[J]. 宇航学报, 2014, 35(4): 474-480

    QIAO Bing, CHEN Zhuopeng. A passive exoskeleton robotic simulator for reduced-gravity locomotion training of astronaut[J]. Journal of Astronautics, 2014, 35(4): 474-480
    [48]
    KUMAR K, SHAH M, LI Y, et al. Electrically-actuated jumping exoskeleton for lunar locomotion[C]// 2024 Regional Student Conferences. 2024: 84209. https://doi.org/10.2514/6.2024-84209
    [49]
    KLUIS L, KELLER N, BAI H, et al. Reducing metabolic cost during planetary ambulation using robotic actuation[J]. Aerospace Medicine and Human Performance, 2021, 92(7): 570-578. doi: 10.3357/AMHP.5754.2021
    [50]
    周泽世, 朱钧, 朱云超, 等. 下肢外骨骼人机耦合交互力特性分析[J]. 医用生物力学, 2022, 37(2): 305-311

    Zhou Zeshi, ZHU Jun, ZHU Yunchao, et al. Characteristic analysis on human-machine interaction force of lower limb exoskeleton[J]. Journal of Medical Biomechanics, 2022, 37(2): 305-311
    [51]
    乔俊淋, 郑德维, 胡梓惟, 等. 助力外骨骼机器人结构设计与运动学建模分析[J]. 机械设计, 2024, 41(1): 21-27

    QIAO Junlin, ZHENG Dewei, Hu Ziwei, et al. Structural design and kinematics modeling analysis of power-assisted exoskeleton robot[J]. Journal of Machine Design, 2024, 41(1): 21-27
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)

    Article Metrics

    Article Views(126) PDF Downloads(9) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return