Citation: | YING Jiajun, JI Jianghui, JIANG Haoxuan, TAN Dongjie, HU Shoucun, BAO Gang. Rotational Characteristics and Surface Thermal Environment of Asteroid (469219) Kamo‘oalewa: Target of the Tianwen-2 Mission (in Chinese). Chinese Journal of Space Science, 2025, 45(3): 736-748 doi: 10.11728/cjss2025.03.2025-yg04 |
[1] |
THOLEN J D, RAMANJOOLOO Y, FOHRING D, et al. A potpourri of near-Earth asteroid observations[C]//American Astronomical Society, DPS Meeting. 2016
|
[2] |
DE LA FUENTE MARCOS C, DE LA FUENTE MARCOS R. Asteroid (469219) 2016 HO3, the smallest and closest earth quasi-satellite[J]. Monthly Notices of the Royal Astronomical Society, 2016, 462(4): 3441-3456 doi: 10.1093/mnras/stw1972
|
[3] |
BENFORD J. Looking for lurkers: Co-orbiters as SETI observables[J]. The Astronomical Journal, 2019, 158(4): 150 doi: 10.3847/1538-3881/ab3e35
|
[4] |
FENUCCI M, NOVAKOVIĆ B. The Role of the Yarkovsky Effect in the long-term dynamics of Asteroid (469219) Kamo‘oalewa[J]. The Astronomical Journal, 2021, 162(6): 227 doi: 10.3847/1538-3881/ac2902
|
[5] |
HU S C, LI B, JIANG H X, et al. Peculiar orbital Characteristics of Earth Quasi-Satellite 469219 Kamo‘oalewa: Implications for the yarkovsky detection and orbital uncertainty propagation[J]. The Astronomical Journal, 2023, 166(4): 178 doi: 10.3847/1538-3881/acf8cc
|
[6] |
SHARKEY B N L, REDDY V, MALHOTRA R, et al. Lunar-like silicate material forms the Earth quasi-satellite (469219) 2016 HO3 Kamoʻoalewa[J]. Communications Earth :Times New Roman;">& Environment, 2021, 2(1): 231
|
[7] |
WINTER O, MOTAES R, GOMES L, et al. On the possibility that 2016 HO3 Kamo‘oalewa was a piece of the Moon[C]//44th COSPAR Scientific Assembly. 2022, 44: 274
|
[8] |
ZHANG P F, LI Y, ZHANG G Z, et al. (469219) Kamo'OALEWA, a Space-Weathering-Matured LL-Chondrite-Like Small NEA: Target of the Tianwen-2 Sample Return Mission[C]//Europlanet Science Congress 2024. Berlin: Freie Universität, 2024
|
[9] |
JIAO Y F, CHENG B, HUANG Y K, et al. Asteroid Kamo‘oalewa’s journey from the lunar Giordano Bruno crater to Earth 1: 1 resonance[J]. Nature Astronomy, 2024, 8(7): 819-826 doi: 10.1038/s41550-024-02258-z
|
[10] |
HEILIGERS J, FERNANDEZ J M, STOHLMAN O R, et al. Trajectory design for a solar-sail mission to asteroid 2016 HO3[J]. Astrodynamics, 2019, 3(3): 231-246 doi: 10.1007/s42064-019-0061-1
|
[11] |
VENIGALLA C, BARESI N, AZIZ J D, et al. Near-Earth Asteroid Characterization and Observation (NEACO) mission to asteroid (469219) 2016 HO3[J]. Journal of Spacecraft and Rockets, 2019, 56(4): 1121-1136 doi: 10.2514/1.A34268
|
[12] |
CHI Z M, LI H Y, JIANG F H, et al. Power-limited low-thrust trajectory optimization with operation point detection[J]. Astrophysics and Space Science, 2018, 363(6): 112 doi: 10.1007/s10509-018-3336-8
|
[13] |
HUANG J C, ZHANG X J, WANG T, et al. Small body exploration in China[C]//14th Europlanet Science Congress. 2020 (https://meetingorganizer.copernicus.org/EPSC2020/EPSC2020-1126.html)
|
[14] |
ZHANG T, WANG B, WEI H Y, et al. Review on planetary regolith-sampling technology[J]. Progress in Aerospace Sciences, 2021, 127: 100760 doi: 10.1016/j.paerosci.2021.100760
|
[15] |
ZHANG T, XU K, DING X L. China’s ambitions and challenges for asteroid-comet exploration[J]. Nature Astronomy, 2021, 5(8): 730-731 doi: 10.1038/s41550-021-01418-9
|
[16] |
HUANG J C, JI J H, YE P J, et al. The Ginger-shaped Asteroid 4179 Toutatis: new Observations from a Successful Flyby of Chang’E-2[J]. Scientific Reports, 2013, 3(1): 3411 doi: 10.1038/srep03411
|
[17] |
LI Y, ZHAO Y H. The Toutatis (4179) boulders: shallow slope in size distribution and shape statistics[J]. Solar System Research, 2023, 57(5): 495-504 doi: 10.1134/S0038094623050088
|
[18] |
ZHAO Y, JI J. Study on rotational parameters for asteroid 4179 Toutatis from chang’E-2’s close flyby[C]//Serendipities in the Solar System and Beyond. Taiwan, China: National Central University, 2018, 513: 111
|
[19] |
HU S C, JI J H, RICHARDSON D C, et al. The formation mechanism of 4179 Toutatis' elongated bilobed structure in a close Earth encounter scenario[J]. Monthly Notices of the Royal Astronomical Society, 2018, 478(1): 501-515 doi: 10.1093/mnras/sty1073
|
[20] |
JIANG Y, JI J H, HUANG J C, et al. The distribution and source of boulders on asteroid 4179 Toutatis[J]. Proceedings of the International Astronomical Union, 2015, 10(S318): 153-155 doi: 10.1017/S1743921315007280
|
[21] |
JI J H, JIANG Y, ZHAO Y H, et al. Chang’E-2 spacecraft observations of asteroid 4179 Toutatis[J]. Proceedings of the International Astronomical Union, 2015, 10(S318): 144-152 doi: 10.1017/S1743921315008674
|
[22] |
JI J H, JIANG Y, ZHAO Y H. New observations of asteroid (4179) Toutatis as closely observed by Chang’E-2[J]. IAU General Assembly, 2015, 29: 2256604
|
[23] |
ZHAO Y H, JI J H, HUANG J C, et al. Orientation and rotational parameters of asteroid 4179 Toutatis: new insights from Chang’E-2’s close flyby[J]. Monthly Notices of the Royal Astronomical Society, 2015, 450(4): 3620-3632 doi: 10.1093/mnras/stv792
|
[24] |
BARUCCI M A, FULCHIGNONI M, JI J H, et al. The Flybys of Asteroids (2867) Šteins, (21) Lutetia, and (4179) Toutatis[M]//MICHEL P, DEMEO F E. BOTTKE W F. Asteroids IV. Tucson: University of Arizona Press, 2015: 433-450
|
[25] |
ZHANG Y X, GUO W X, ZHENG H, et al. DCAPPSO: A novel approach for inverting asteroid rotational properties with applications to DAMIT and Tianwen-2 target asteroid[J]. Astronomy and Computing, 2025, 51: 100925 doi: 10.1016/j.ascom.2024.100925
|
[26] |
LI X Y, SCHEERES D J. The shape and surface environment of 2016 HO3[J]. Icarus, 2021, 357: 114249 doi: 10.1016/j.icarus.2020.114249
|
[27] |
VOKROUHLICKÝ D. Diurnal Yarkovsky effect as a source of mobility of meter-sized asteroidal fragments. I. Linear theory[J]. Astronomy and Astrophysics, 1998, 335: 1093-1100
|
[28] |
LIU L, CHEN Q, YAN J G, et al. Surface thermal inertia of near-earth asteroid (469219) kamo`oalewa: Statistical estimation and implications[J]. Solar System Research, 2024, 58(4): 469-479 doi: 10.1134/S0038094624700321
|
[29] |
FENUCCI M, NOVAKOVIĆ B, ZHANG P F, et al. Astrometry, orbit determination, and thermal inertia of the Tianwen-2 target asteroid (469219) Kamo ‘oalewa[J]. Astronomy :Times New Roman;">& Astrophysics, 2025, 695: A196
|
[30] |
JI J H, TAN D J, BAO C H, et al. PyMsOfa: A python package for the Standards of Fundamental Astronomy (SOFA) service[J]. Research in Astronomy and Astrophysics, 2023, 23(12): 125015 doi: 10.1088/1674-4527/ad0499
|
[31] |
MŰLLER M. Surface Properties of Asteroids from Mid-Infrared Observations and Thermophysical Modeling[D]. Berlin: Free University of Berlin, 2007
|
[32] |
SHIMAKI Y, SENSHU H, SAKATANI N, et al. Thermophysical properties of the surface of asteroid 162173 Ryugu: Infrared observations and thermal inertia mapping[J]. Icarus, 2020, 348: 113835 doi: 10.1016/j.icarus.2020.113835
|
[33] |
DELLAGIUSTINA D N, EMERY J P, GOLISH D R, et al. Properties of rubble-pile asteroid (101955) Bennu from OSIRIS-REx imaging and thermal analysis[J]. Nature Astronomy, 2019, 3(4): 341-351 doi: 10.1038/s41550-019-0731-1
|
[34] |
DELBO M, MUELLER M, EMERY J P, et al. Asteroid Thermophysical Modeling[M]//MICHEL P, DEMEO F E. BOTTKE W F. Asteroids IV. Tucson: University of Arizona Press, 2015, 1: 107-128
|
[35] |
HANUŠ J, DELBO M, ĎURECH J, et al. Thermophysical modeling of main-belt asteroids from WISE thermal data[J]. Icarus, 2018, 309: 297-337 doi: 10.1016/j.icarus.2018.03.016
|
[36] |
ROZITIS B, GREEN S F, MACLENNAN E, et al. Observing the variation of asteroid thermal inertia with heliocentric distance[J]. Monthly Notices of the Royal Astronomical Society, 2018, 477(2): 1782-1802 doi: 10.1093/mnras/sty640
|
[37] |
HUNG D, HANUŠ J, MASIERO J R, et al. Thermal properties of 1847 WISE-observed asteroids[J]. The Planetary Science Journal, 2022, 3(3): 56 doi: 10.3847/PSJ/ac4d1f
|
[38] |
FENUCCI M, NOVAKOVIĆ B, VOKROUHLICKÝ D, et al. Low thermal conductivity of the superfast rotator (499998) 2011 PT[J]. Astronomy :Times New Roman;">& Astrophysics, 2021, 647: A61
|
[39] |
FENUCCI M, NOVAKOVIĆ B, MARČETA D. The low surface thermal inertia of the rapidly rotating near-Earth asteroid 2016 GE1[J]. Astronomy :Times New Roman;">& Astrophysics, 2023, 675: A134
|
[40] |
余亮亮, 季江徽, 王素. 近地小行星(162173)1999JU3的热惯量和表面特征研究[J]. 天文学报, 2013, 54(6): 537-549 doi: 10.3969/j.issn.0001-5245.2013.06.004
YU Liangliang, JI Jianghui, WANG Su. Investigation of thermal inertia and surface properties for near-Earth Asteroid (162173) 1999 JU3[J]. ActaAstronomica Sinica, 2013, 54(6): 537-549 doi: 10.3969/j.issn.0001-5245.2013.06.004
|
[41] |
JIANG H X, JI J H. Thermophysical modeling of 20 Themis Family Asteroids with WISE/NEOWISE Observations[J]. The Astronomical Journal, 2021, 162(2): 40 doi: 10.3847/1538-3881/ac01c8
|
[42] |
JIANG H X, JI J H, YU L L. Determination of size, albedo, and thermal inertia of 10 Vesta Family Asteroids with WISE/NEOWISE observations[J]. The Astronomical Journal, 2020, 159(6): 264 doi: 10.3847/1538-3881/ab8af5
|
[43] |
JIANG H X, JI J H, YU L L, et al. Mid-IR observations of IRAS, AKARI, WISE/NEOWISE, and subaru for large icy asteroid (704) Interamnia: a new perspective of regolith properties and water ice fraction[J]. The Astrophysical Journal, 2023, 944(2): 202 doi: 10.3847/1538-4357/acaeaa
|
[44] |
JIANG H X, YU L L, JI J H. Revisiting the advanced thermal physical model: New perspectives on thermophysical characteristics of (341843) 2008 EV5 from Four-band WISE Data with the Sunlight-reflection model[J]. The Astronomical Journal, 2019, 158(5): 205 doi: 10.3847/1538-3881/ab46b4
|
[45] |
YU L L, YANG B, JI J H, et al. Thermophysical characteristics of the large main-belt asteroid (349) Dembowska[J]. Monthly Notices of the Royal Astronomical Society, 2017, 472(2): 2388-2397 doi: 10.1093/mnras/stx2089
|
[46] |
YU L L, JI J H, IP W H. Surface thermophysical properties on the potentially hazardous asteroid (99942) Apophis[J]. Research in Astronomy and Astrophysics, 2017, 17(7): 070 doi: 10.1088/1674-4527/17/7/70
|
[47] |
YU L L, JI J H. Surface thermophysical properties determination of OSIRIS-REx target asteroid (101955) Bennu[J]. Monthly Notices of the Royal Astronomical Society, 2015, 452(1): 368-375 doi: 10.1093/mnras/stv1270
|
[48] |
NOVAKOVIĆ B, FENUCCI M, MARČETA D, et al. ASTERIA—Asteroid thermal inertia analyzer[J]. The Planetary Science Journal, 2024, 5(1): 11 doi: 10.3847/PSJ/ad08c0
|
[49] |
REN J L, WU B, HESSE M A, et al. Surface dynamics of small fast-rotating asteroids: analysis of possible regolith on asteroid 2016 HO3[J]. Astronomy :Times New Roman;">& Astrophysics, 2024, 692: A62
|
[50] |
李春来, 刘建军, 任鑫, 等. “天问二号”任务科学目标和有效载荷配置[J]. 深空探测学报(中英文), 2024, 11(3): 304-310 doi: 10.15982/j.issn.2096-9287.2024.20230185
LI Chunlai, LIU Jianjun, REN Xin, et al. Scientific objectives and payloads configuration of the Tianwen-2 Mission[J]. Journal of Deep Space Exploration, 2024, 11(3): 304-310 doi: 10.15982/j.issn.2096-9287.2024.20230185
|