Turn off MathJax
Article Contents
XIN Hao, ZHAO Haisheng, WANG Junjiang, GE Shucan. Study on Ionospheric Absorption Variation Characteristics in the Northwest Corrido (in Chinese). Chinese Journal of Space Science, 2025, 45(4): 1-9 doi: 10.11728/cjss2025.04.2024-0075
Citation: XIN Hao, ZHAO Haisheng, WANG Junjiang, GE Shucan. Study on Ionospheric Absorption Variation Characteristics in the Northwest Corrido (in Chinese). Chinese Journal of Space Science, 2025, 45(4): 1-9 doi: 10.11728/cjss2025.04.2024-0075

Study on Ionospheric Absorption Variation Characteristics in the Northwest Corrido

doi: 10.11728/cjss2025.04.2024-0075 cstr: 32142.14.cjss.2024-0075
  • Received Date: 2024-06-09
  • Accepted Date: 2025-07-08
  • Rev Recd Date: 2024-09-15
  • Available Online: 2024-09-18
  • Ionospheric fmin is the lowest echo frequency observed on the frequency height map, which is an important index of the performance of the ionosonde and also an important index for the study of the absorption effect in the ionospheric D region. In this paper, the ionospheric absorption intensity, spatial distribution, diurnal variation, seasonal variation and long-term variation are studied by using ionospheric fmin data from Xi’an, Urumqi and Lanzhou stations of China Ionospheric vertical survey network in the Northwest Corridor region. The study of ionospheric absorption variation is of great application value to the selection of the lowest frequency of shortwave communication, the evaluation of detection performance of sky-wave over-the-horizon radar and the prediction of VLF telecommunication efficiency. At the same time, ionospheric absorption is closely related to the electron density of the D layer, which is an important indicator of the intensity of the electron density of the D layer. To study the ionospheric absorption characteristics is of great scientific significance for the study of the ionospheric variation characteristics and the establishment of the electron density distribution model in the D region. The absorption effect of ionospheric region D in the Northwest Corridor mainly occurs in the daytime, with the highest absorption intensity at noon and the weakest in the early morning at night. Meanwhile, the absorption effect of ionospheric region D in the Northwest Corridor has significant seasonal variation characteristics, the strongest in summer and the weakest in other seasons. The ionospheric fmin value of Urumchi at higher latitude is obviously higher than that of Xi’an and Lanzhou at middle latitude, and the absorption effect center has obvious diurnal drift characteristics. The absorption of ionospheric region D in the Northwest Corridor is positively correlated with the intensity of solar activity. In particular, the absorption intensity of ionospheric region D in high solar activity years is significantly higher than that in low solar activity years.

     

  • loading
  • [1]
    BELROSE J S. Radio wave probing of the ionosphere by the partial reflection of radio waves (from heights below 100km)[J]. Journal of Atmospheric and Terrestrial Physics, 1970, 32(4): 567-596 doi: 10.1016/0021-9169(70)90209-6
    [2]
    BELROSE J S, BURKE M J. Study of the lower ionosphere using partial reflection: 1. Experimental technique and method of analysis[J]. Journal of Geophysical Research, 1964, 69(13): 2799-2818 doi: 10.1029/JZ069i013p02799
    [3]
    BELROSE J S, BURKE M J, COYNE T N R, et al. D-region measurements with the differential-absorption, differential-phase partial-reflection experiments[J]. Journal of Geophysical Research, 1972, 77(25): 4829-4838
    [4]
    CHAKRABARTY D K, CHAKRABARTY P, WITT G. A theoretical attempt to explain some observed features of the D region[J]. Journal of Geophysical Research: Space Physics, 1978, 83(A12): 5763-5767 doi: 10.1029/JA083iA12p05763
    [5]
    ISHISAKA K, OKADA T, HAWKINS J, et al. Investigation of electron density profile in the lower ionosphere by SRP-4 rocket experiment[J]. Earth, Planets and Space, 2005, 57(9): 879-884 doi: 10.1186/BF03351865
    [6]
    MEIRA L G JR. Rocket measurements of upper atmospheric nitric oxide and their consequences to the lower ionosphere[J]. Journal of Geophysical Research, 1971, 76(1): 202-212 doi: 10.1029/JA076i001p00202
    [7]
    THOMSON N R, CLILVERD M A, RODGER C J. Ionospheric D region: VLF-measured electron densities compared with rocket-based FIRI-2018 model[J]. Journal of Geophysical Research: Space Physics, 2022, 127(11): e2022JA030977. doi: 10.1029/2022JA030977
    [8]
    MATHEWS J D. Incoherent scatter radar probing of the 60-100-km atmosphere and ionosphere[J]. IEEE Transactions on Geoscience and Remote Sensing, 1986, GE-24(5): 765-776
    [9]
    MENDILLO M, EVANS J V. Incoherent scatter observations of the ionospheric response to a large solar flare[J]. Radio Science, 1974, 9(2): 197-203 doi: 10.1029/RS009i002p00197
    [10]
    ŽIGMAN V, GRUBOR D, ŠULIĆ D. D-region electron density evaluated from VLF amplitude time delay during X-ray solar flares[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2007, 69(7): 775-792 doi: 10.1016/j.jastp.2007.01.012
    [11]
    MCRAE W M, THOMSON N R. Solar flare induced ionospheric D-region enhancements from VLF phase and amplitude observations[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2004, 66(1): 77-87 doi: 10.1016/j.jastp.2003.09.009
    [12]
    THOMSON N R, CLILVERD M A. Solar flare induced ionospheric D-region enhancements from VLF amplitude observations[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2001, 63(16): 1729-1737 doi: 10.1016/S1364-6826(01)00048-7
    [13]
    PALIT S, BASAK T, MONDAL S K, et al. Modeling of very low frequency (VLF) radio wave signal profile due to solar flares using the GEANT4 Monte Carlo simulation coupled with ionospheric chemistry[J]. Atmospheric Chemistry and Physics, 2013, 13(18): 9159-9168 doi: 10.5194/acp-13-9159-2013
    [14]
    SINGH A K, SINGH A K, SINGH R, et al. Solar flare induced D-region ionospheric perturbations evaluated from VLF measurements[J]. Astrophysics and Space Science, 2014, 350(1): 1-9. doi: 10.1007/s10509-013-1699-4
    [15]
    TAN L M, THU N N, HA T Q, et al. Study of solar flare induced D-region ionosphere changes using VLF amplitude observations at a low-latitude site[J]. Indian Journal of Radio and Space Physics, 2014, 43(3): 197-204
    [16]
    XIONG S P, LI J Y, WEI G C, et al. The northern and southern hemispheric asymmetries of mesospheric ozone at high latitudes during the January 2012 solar proton events[J]. Space Weather, 2023, 21(5): e2023SW003435. doi: 10.1029/2023SW003435
    [17]
    THOMSON N R. Daytime tropical D region parameters from short path VLF phase and amplitude[J]. Journal of Geophysical Research: Space Physics, 2010, 115(A9): A09313. doi: 10.1029/2010JA015355
    [18]
    THOMSON N R, RODGER C J, CLILVERD M A. Daytime D region parameters from long-path VLF phase and amplitude[J]. Journal of Geophysical Research: Space Physics, 2011, 116(A11): A11305. doi: 10.1029/2011JA016910
    [19]
    HOLDSWORTH D A, VUTHALURU R, REID I M, et al. Differential absorption measurements of mesospheric and lower thermospheric electron densities using the Buckland Park MF radar[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2002, 64(18): 2029-2042 doi: 10.1016/S1364-6826(02)00232-8
    [20]
    LI N, CHEN J S, DING Z H, et al. Mean winds observed by the Kunming MF radar in 2008-2010[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2015, 122: 58-65 doi: 10.1016/j.jastp.2014.10.011
    [21]
    TANG Z M, LI N, WANG J Y, et al. Variation of electron density in the D-region using Kunming MF radar under low solar activity[J]. Atmosphere, 2023, 14(12): 1764. doi: 10.3390/atmos14121764
    [22]
    LI N, LEI J, LUAN X, et al. Responses of the D region ionosphere to solar flares revealed by MF radar measurements[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2019, 182: 211-216 doi: 10.1016/j.jastp.2018.11.014
    [23]
    张东和, 萧佐, 吴健, 等. 利用MF雷达对耀斑期间电离层D区电子密度的观测研究[J]. 空间科学学报, 2003, 23(5): 334-342 doi: 10.3969/j.issn.0254-6124.2003.05.003

    ZHANG Donghe, XIAO Zuo, WU Jian, et al. The study of the electron density in ionospheric d region using mf radar during flares period[J]. Chinese Journal of Space Science, 2003, 23(5): 334-342 doi: 10.3969/j.issn.0254-6124.2003.05.003
    [24]
    ZHU M Y, XU T, SUN S J, et al. Physical model of D-region ionosphere and preliminary comparison with IRI and data of MF radar at Kunming[J]. Atmosphere, 2023, 14(2): 235. doi: 10.3390/atmos14020235
    [25]
    FEJER J A, VICE R W. An investigation of the ionospheric D-region[J]. Journal of Atmospheric and Terrestrial Physics, 1959, 16(3/4): 291-306
    [26]
    ANANTHAKRISHNAN S, ABDU M A, PIAZZA L R. D-region recombination coefficients and the short wavelength X-ray flux during a solar flare[J]. Planetary and Space Science, 1973, 21(3): 367-375 doi: 10.1016/0032-0633(73)90035-4
    [27]
    BARRINGTON R E, THRANE E. The determination of D-region electron densities from observations of cross modulations[J]. Journal of Atmospheric and Terrestrial Physics, 1962, 24(1): 31-42 doi: 10.1016/0021-9169(62)90292-1
    [28]
    RAULIN J P, TROTTET G, KRETZSCHMAR M, et al. Response of the low ionosphere to X-ray and Lyman-α solar flare emissions[J]. Journal of Geophysical Research: Space Physics, 2013, 118(1): 570-575. doi: 10.1029/2012JA017916
    [29]
    VAMPOLA A L, GORNEY D J. Electron energy deposition in the middle atmosphere[J]. Journal of Geophysical Research: Space Physics, 1983, 88(A8): 6267-6274 doi: 10.1029/JA088iA08p06267
    [30]
    NAGANO I, OKADA T. Electron density profiles in the ionospheric D-region estimated from MF radio wave absorption[J]. Advances in Space Research, 2000, 25(1): 33-42 doi: 10.1016/S0273-1177(99)00894-7
    [31]
    FERGUSON J A. Computer Programs for Assessment of Long-Wavelength Radio Communications, Version 2.0: User’s Guide and Source Files[R]. San Diego: Space and Naval Warfare Systems Center, 1998
    [32]
    KUMAR A, KUMAR S. Solar flare effects on D‑region ionosphere using VLF measurements during low- and high-solar activity phases of solar cycle 24[J]. Earth, Planets and Space, 2018, 70(1): 29. doi: 10.1186/s40623-018-0794-8
    [33]
    MAURYA A K, SINGH R, KUMAR S, et al. Waves-like signatures in the D-region ionosphere generated by solar flares[C]//Proceedings of 2014 XXXIth URSI General Assembly and Scientific Symposium. Beijing: IEEE, 2014. DOI: 10.1109/URSIGASS.2014.6929796
    [34]
    GRUBOR D, ŠULIĆ D, ŽIGMAN V. Influence of solar X-ray flares on the earth-ionosphere waveguide[J]. Serbian Astronomical Journal, 2005(171): 29-35 doi: 10.2298/SAJ0571029G
    [35]
    OSEPIAN A, KIRKWOOD S, DALIN P, et al. D-region electron density and effective recombination coefficients during twilight - experimental data and modelling during solar proton events[J]. Annales Geophysicae, 2009, 27(10): 3713-3724 doi: 10.5194/angeo-27-3713-2009
    [36]
    SELVAKUMARAN R, MAURYA A K, GOKANI S A, et al. Solar flares induced D-region ionospheric and geomagnetic perturbations[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2015, 123: 102-112 doi: 10.1016/j.jastp.2014.12.009
    [37]
    KUMAR A, KUMAR S. Space weather effects on the low latitude D-region ionosphere during solar minimum[J]. Earth, Planets and Space, 2014, 66(1): 76 doi: 10.1186/1880-5981-66-76
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article Metrics

    Article Views(186) PDF Downloads(33) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return