Turn off MathJax
Article Contents
LI Zihang, YU Ruijiao, YE Fang, DU Wangfang, CHEN Hao, GUO Hang. Experimental Research Progress on Fuel Cells and Electrolytic Cells under Unconventional Gravity (in Chinese). Chinese Journal of Space Science, 2025, 45(5): 1-12 doi: 10.11728/cjss2025.05.2024-0157
Citation: LI Zihang, YU Ruijiao, YE Fang, DU Wangfang, CHEN Hao, GUO Hang. Experimental Research Progress on Fuel Cells and Electrolytic Cells under Unconventional Gravity (in Chinese). Chinese Journal of Space Science, 2025, 45(5): 1-12 doi: 10.11728/cjss2025.05.2024-0157

Experimental Research Progress on Fuel Cells and Electrolytic Cells under Unconventional Gravity

doi: 10.11728/cjss2025.05.2024-0157 cstr: 32142.14.cjss.2024-0157
  • Received Date: 2024-11-07
  • Rev Recd Date: 2024-12-30
  • Available Online: 2024-12-31
  • Fuel cells and electrolytic cells can provide energy support for long-term missions and bases in space, but different gravitational levels in space affect their performance, so experimental studies in unconventional gravity environments are necessary for the development and improvement of fuel cells and electrolytic cells for spaceflight. The experimental studies of fuel cells and electrolytic cells in unconventional gravity conditions are reviewed. The analyses and discussions show that the change of gravity level leads to the change of gas-liquid two-phase flow characteristics inside the fuel cell and electrolytic cell, which affects the performance differently. There is still a lack of experimental data on fuel cells in hypergravity and long-term microgravity, as well as unconventional gravity experiments on regenerative fuel cells. Fuel cell and electrolysis cell experiments under unconventional gravity conditions will not only help to promote the intersection of fluid physics and thermophysics with electrochemistry, but will also provide a data basis for the development of regenerative fuel cell systems in space.

     

  • loading
  • [1]
    吴峰, 叶芳, 郭航, 等. 燃料电池在航天中的应用[J]. 电池, 2007, 37(3): 238-240

    WU Feng, YE Fang, GUO Hang, et al. The application of fuel cells in aerospace[J]. Battery Bimonthly, 2007, 37(3): 238-240
    [2]
    杨紫光, 叶芳, 郭航, 等. 航天电源技术研究进展[J]. 化工进展, 2012, 31(6): 1231-1237

    YANG Ziguang, YE Fang, GUO Hang, et al. Progress of space power technology[J]. Chemical Industry and Engineering Progress, 2012, 31(6): 1231-1237
    [3]
    SCOTT John H. The development of fuel cell technology for electric power generation: from NASA's manned space program to the “Hydrogen Economy”[J]. Proceedings of the IEEE, 2006, 94(10): 1815-1825 doi: 10.1109/JPROC.2006.883702
    [4]
    周洁, 郑颖平, 谢吉虹. 制氢技术研究进展及在燃料电池中的应用前景[J]. 化工时刊, 2007, 21(5): 71-75

    ZHOU Jie, ZHENG Yingping, XIE Jihong. Recent advances in hydrogen generation methods and its prospects for applications in fuel cell[J]. Chemical Industry Times, 2007, 21(5): 71-75
    [5]
    KABIROV V A, SEMENOV V D, TORGAEVA D S, et al. Miniaturization of spacecraft electrical power systems with solar-hydrogen power supply system[J]. International Journal of Hydrogen Energy, 2023, 48(24): 9057-9070 doi: 10.1016/j.ijhydene.2022.12.087
    [6]
    BELZ S, GANZER B, MESSERSCHMID E, et al. Hybrid life support systems with integrated fuel cells and photobioreactors for a lunar base[J]. Aerospace Science and Technology, 2013, 24(1): 169-176 doi: 10.1016/j.ast.2011.11.004
    [7]
    MENG Long, WANG Zhe, WANG Lu, et al. Novel and efficient purification of scrap Al-Mg alloys using supergravity technology[J]. Waste Management, 2021, 119: 22-29 doi: 10.1016/j.wasman.2020.09.027
    [8]
    许思宇, 李海兵, 尹钊. “国际空间站”环境控制与生命保障系统技术升级分析[J]. 中国航天, 2024(4): 17-24

    XU Siyu, LI Haibing, YIN Zhao. Analysis on the technical upgrades to the international space station environmental control and life support system[J]. Aerospace China, 2024(4): 17-24
    [9]
    裴照宇, 彭兢, 张明, 等. 月球科研站能源系统关键技术及发展趋势[J]. 中国电机工程学报, 2023, 43(22): 8689-8700

    PEI Zhaoyu, PENG Jing, ZHANG Ming, et al. Key technologies and development trend of power system for international lunar research station[J]. Proceedings of the CSEE, 2023, 43(22): 8689-8700
    [10]
    康琦, 侯瑞. 微重力流体管理在航天工程中的应用[J]. 自然杂志, 2007, 29(6): 328-335

    KANG Qi, HOU Rui. The applications of microgravity fluid management in the aerospace engineering[J]. Chinese Journal of Nature, 2007, 29(6): 328-335
    [11]
    韩淋, 王海名, 范唯唯, 等. 2020年国际空间站科研与应用进展[J]. 载人航天, 2021, 27(4): 530-536

    HAN Lin, WANG Haiming, FAN Weiwei, et al. Progress of scientific research and application on the international space station in 2020[J]. Manned Spaceflight, 2021, 27(4): 530-536
    [12]
    DE VET S J, RUTGERS R. From waste to energy: first experimental bacterial fuel cells onboard the international space station[J]. Microgravity Science and Technology, 2007, 19(5/6): 225-229
    [13]
    付毅飞. 我国首台空间应用燃料电池升空[N]. 科技日报, 2022-11-14(005
    [14]
    STARR Michelle. Breathe deep: how the ISS keeps astronauts alive[EB/OL]. (2015-03-19)[2024-11-07]https://www.cnet.com/science/breathe-deep-how-the-iss-keeps-astronauts-alive/
    [15]
    李俊荣, 尹永利, 周抗寒, 等. 空间站电解制氧技术研究进展[J]. 航天医学与医学工程, 2013, 26(3): 215-220

    LI Junrong, YIN Yongli, ZHOU Kanghan, et al. Progress of oxygen generation technology by water electrolysis in space station[J]. Space Medicine :Times New Roman;">& Medical Engineering, 2013, 26(3): 215-220
    [16]
    资源再生系统助力空间站长期运行[J]. 中国科学探险, 2022(4): 28-29
    [17]
    韦明罡, 万士昕, 姚康庄, 等. 国家微重力实验室落塔及微重力实验研究[J]. 载人航天, 2007(4): 1-3,22
    [18]
    China) (NMLC)[J]. Science in China Series E Engineering & Materials Science, 2005, 48(3): 305-316 (张孝谦, 袁龙根, 吴文东, 等. 国家微重力实验室百米落塔实验设施的几项关键技术[J]. 中国科学 E辑, 2005, 35(5): 523-534

    ZHANG Xiaoqian, YUAN Longgen, WU Wendong, et al. Some key technics of drop tower experiment device of National Microgravity Laboratory
    [19]
    KUFNER Ewald, BLUM J, CALLENS N, et al. ESA’s drop tower utilisation activities 2000 to 2011[J]. Microgravity Science and Technology, 2011, 23(4): 409-425 doi: 10.1007/s12217-011-9261-x
    [20]
    LEKAN Jack, NEUMANN Eric S, SOTOS Raymond G. Capabilities and constraints of NASA's ground-based reduced gravity facilities[C]//The Second International Microgravity Combustion Workshop. Cleveland, Ohio, USA: NASA Lewis Research Center, 1993: 45-60
    [21]
    屈斌, 王启, 王海平, 等. 失重飞机飞行方法研究[J]. 飞行力学, 2007, 25(2): 65-67,71

    QU Bin, WANG Qi, WANG Haiping, et al. Zero-g aircraft flight method research[J]. Flight Dynamics, 2007, 25(2): 65-67,71
    [22]
    田大可, 范小东, 郑夕健, 等. 空间可展开天线微重力环境模拟研究现状与展望[J]. 机械工程学报, 2021, 57(3): 11-25

    TIAN Dake, FAN Xiaodong, ZHENG Xijian, et al. Research status and prospect of micro-gravity environment simulation for space deployable antenna[J]Journal of Mechanical Engineering, 2021, 57(3): 11-25
    [23]
    朱战霞, 袁建平. 航天器操作的微重力环境构建[M]. 北京: 中国宇航出版社, 2013

    ZHU Zhanxia, YUAN Jianping. Construction of Microgravity Environment for Spacecraft Operation[M]. Beijing: China Aerospace Press, 2013
    [24]
    PLETSER Vlafimir. Short duration microgravity experiments in physical and life sciences during parabolic flights: the first 30 ESA campaigns[J]. Acta Astronautica, 2004, 55(10): 829-854 doi: 10.1016/j.actaastro.2004.04.006
    [25]
    林伟岸, 李俊超, 赵宇, 等. ZJU400超重力离心机系统开放共享探讨[J]. 实验技术与管理, 2019, 36(11): 282-285

    LIN Wei’an, LI Junchao, ZHAO Yu, et al. Exploration on opening and sharing of ZJU400 hypergravity centrifuge system[J]. Experimental Technology and Management, 2019, 36(11): 282-285
    [26]
    LOMAX Bethane A, JUST Gunter H, MCHUGH Patrick J, et al. Predicting the efficiency of oxygen-evolving electrolysis on the Moon and Mars[J]. Nature Communications, 2022, 13(1): 583 doi: 10.1038/s41467-022-28147-5
    [27]
    MEHTA Viral, COOPER Joyce Smith. Review and analysis of PEM fuel cell design and manufacturing[J]. Journal of Power Sources, 2003, 114(1): 32-53 doi: 10.1016/S0378-7753(02)00542-6
    [28]
    DUBALE Amare Aregahegn, ZHENG Yuanyuan, WANG Honglei, et al. High-performance bismuth-doped nickel aerogel electrocatalyst for the methanol oxidation reaction[J]. Angewandte Chemie International Edition, 2020, 59(33): 13891-13899 doi: 10.1002/anie.202004314
    [29]
    赵建福, 郭航, 叶芳, 等. DMFC内部气液两相流动与电性能的短时落塔实验研究[J]. 空间科学学报, 2008, 28(1): 17-21 doi: 10.11728/cjss2008.01.017

    ZHAO Jianfu, GUO Hang, YE Fang, et al. Experimental study on two-phase flow and power performance of DMFC utilizing the Drop Tower Beijing[J]. Chinese Journal of Space Science, 2008, 28(1): 17-21 doi: 10.11728/cjss2008.01.017
    [30]
    GUO Hang, ZHAO Jianfu, YE Fang, et al. Two-phase flow in fuel cells in short-term microgravity condition[J]. Microgravity Science and Technology, 2008, 20(3/4): 265-269
    [31]
    叶芳, 赵建福, 律翠萍, 等. 燃料电池短时微重力条件下两相流研究[C]//2007多相流学术会议论文集. 大庆: 中国工程热物理学会, 2007: 44-51

    YE Fang, ZHAO Jianfu, LÜ Cuiping, et al. Study of two-phase flow in fuel cells under short-term microgravity[C]//Proceedings of Annual Conference of Multi-Phase Flow. Daqing: Chinese Society of Engineering Thermophysics, 2007: 44-51
    [32]
    郭航, 赵建福, 律翠萍, 等. 短时微重力条件下燃料电池性能实验研究[J]. 工程热物理学报, 2008, 29(5): 865-867

    GUO Hang, ZHAO Jianfu, LÜ Cuiping, et al. Experimental study of fuel cells performance in short term microgravity condition[J]. Journal of Engineering Thermophysics, 2008, 29(5): 865-867
    [33]
    徐龙云. 基于固态电解质的电解池及燃料电池性能研究[D]. 北京: 北京工业大学, 2013

    XU Longyun. Study of Performance of Fuel Cells and electrolytic Cells Based on Solid Electrolyt[D]. Beijing: Beijing University of Technology, 2013
    [34]
    GUO Hang, WU Feng, YE Fang, et al. Two-phase flow in anode flow field of a small direct methanol fuel cell in different gravities[J]. Science in China Series E: Technological Sciences, 2009, 52(6): 1576-1582 doi: 10.1007/s11431-009-0179-0
    [35]
    YE Fang, WU Feng, ZHAO Jianfu, et al. Experimental investigation of performance of a miniature direct methanol fuel cell in short-term microgravity[J]. Microgravity Science and Technology, 2010, 22(3): 347-352 doi: 10.1007/s12217-010-9228-3
    [36]
    BAROUTAJI Ahmad, WILBERFORCE Tabbi, RAMADAN Mohamad, et al. Comprehensive investigation on hydrogen and fuel cell technology in the aviation and aerospace sectors[J]. Renewable and Sustainable Energy Reviews, 2019, 106: 31-40 doi: 10.1016/j.rser.2019.02.022
    [37]
    郭航, 赵建福, 刘璿, 等. 质子交换膜燃料电池短时微重力性能实验研究[J]. 工程热物理学报, 2009, 30(8): 1376-1378

    GUO Hang, ZHAO Jianfu, LIU Xuan, et al. Experimental Study of performance of proton exchange membrane fuel cells in short-term microgravity condition[J]. Journal of Engineering Thermophysics, 2009, 30(8): 1376-1378
    [38]
    GUO Hang, LIU Xuan, ZHAO Jianfu, et al. Effect of low gravity on water removal inside proton exchange membrane fuel cells (PEMFCs) with different flow channel configurations[J]. Energy, 2016, 112: 926-934 doi: 10.1016/j.energy.2016.07.006
    [39]
    GUO Hang, LIU Xuan, ZHAO Jianfu, et al. Gas-liquid two-phase flow behaviors and performance characteristics of proton exchange membrane fuel cells in a short-term microgravity environment[J]. Journal of Power Sources, 2017, 353: 1-10 doi: 10.1016/j.jpowsour.2017.03.137
    [40]
    GUO Hang, LIU Xuan, ZHAO Jianfu, et al. Experimental study of two-phase flow in a proton exchange membrane fuel cell in short-term microgravity condition[J]. Applied Energy, 2014, 136: 509-518 doi: 10.1016/j.apenergy.2014.09.058
    [41]
    GUO Qing, YE Fang, GUO Hang, et al. Gas/water and heat management of PEM-based fuel cell and electrolyzer systems for space applications[J]. Microgravity Science and Technology, 2017, 29(1/2): 49-63
    [42]
    ACEVEDO Raul, POVENTUD-ESTRADA Carlos M, MORALES-NAVAS Camila, et al. Chronoamperometric study of ammonia oxidation in a direct ammonia alkaline fuel cell under the influence of microgravity[J]. Microgravity Science and Technology, 2017, 29(4): 253-261 doi: 10.1007/s12217-017-9543-z
    [43]
    POVENTUD-ESTRADA Carlos M, ACEVEDO Raul, MORALES Camila, et al. Microgravity effects on chronoamperometric ammonia oxidation reaction at platinum nanoparticles on modified mesoporous carbon supports[J]. Microgravity Science and Technology, 2017, 29(5): 381-389 doi: 10.1007/s12217-017-9558-5
    [44]
    RABAEY L, OSSIEUR W, VERHAEGE M, et al. Continuous microbial fuel cells convert carbohydrates to electricity[J]. Water Science and Technology, 2005, 52(1/2): 515-523
    [45]
    倪萌, LEUNG M K H, SUMATHY K. 电解水制氢技术进展[J]. 能源环境保护, 2004, 18(5): 5-9

    NI Meng, LEUNG M K H, SUMATHY K. Progress of hydrogen production through water electrolysis[J]. Energy Environmental Protection, 2004, 18(5): 5-9
    [46]
    王飞, 周抗寒, 管春磊, 等. PEM水电解技术在航天上的应用现状与发展趋势[J]. 上海航天(中英文), 2020, 37(2): 23-29

    WANG Fei, ZHOU Kanghan, GUAN Chunlei, et al. Application status and development of PEM water electrolysis in aerospace field[J]. Aerospace Shanghai (Chinese :Times New Roman;">& English), 2020, 37(2): 23-29
    [47]
    曾庆堂, 郑传先. 空间站水电解制氧技术[J]. 航天医学与医学工程, 1990, 3(3): 222-226
    [48]
    周抗寒, 韩永强, 李俊荣. 空间站电解制氧技术研究[J]. 载人航天, 2003(5): 25-29
    [49]
    IWASAKI A, KANEKO H, ABE Y, et al. Investigation of electrochemical hydrogen evolution under microgravity condition[J]. Electrochimica Acta, 1998, 43(5/6): 509-514
    [50]
    SAKURAI Masato, SONE Yoshitsugu, NISHIDA Tetsuo, et al. Fundamental study of water electrolysis for life support system in space[J]. Electrochimica Acta, 2013, 100: 350-357 doi: 10.1016/j.electacta.2012.11.112
    [51]
    KIUCHI Daisuke, MATSUSHIMA Hisayoshi, FUKUNAKA Yasuhiro, et al. Ohmic resistance measurement of bubble froth layer in water electrolysis under microgravity[J]. Journal of The Electrochemical Society, 2006, 153(8): E138-E143 doi: 10.1149/1.2207008
    [52]
    KANEKO Hiroko, TANAKA Kotaro, IWASAKI Akira, et al. Water electrolysis under microgravity condition by parabolic flight[J]. Electrochimica Acta, 1993, 38(5): 729-733 doi: 10.1016/0013-4686(93)80245-U
    [53]
    MATSUSHIMA H, NISHIDA T, KONISHI Y, et al. Water electrolysis under microgravity: part 1. experimental technique[J]. Electrochimica Acta, 2003, 48(28): 4119-4125 doi: 10.1016/S0013-4686(03)00579-6
    [54]
    MATSUSHIMA H, FUKUNAKA Y, KURIBAYASHI K. Water electrolysis under microgravity: part II. description of gas bubble evolution phenomena[J]. Electrochimica Acta, 2006, 51(20): 4190-4198 doi: 10.1016/j.electacta.2005.11.046
    [55]
    MATSUSHIMA Hisayoshi, KIUCHI Daisuke, FUKUNAKA Yasuhiro, et al. Single bubble growth during water electrolysis under microgravity[J]. Electrochemistry Communications, 2009, 11(8): 1721-1723 doi: 10.1016/j.elecom.2009.07.009
    [56]
    BASHKATOV Aleksandr, YANG Xuegeng, MUTSCHKE Gerd, et al. Dynamics of single hydrogen bubbles at Pt microelectrodes in microgravity[J]. Physical Chemistry Chemical Physics, 2021, 23(20): 11818-11830 doi: 10.1039/D1CP00978H
    [57]
    DERHOUMI Zine, MANDIN Philippe, ROUSTAN Hervé, et al. Experimental investigation of two-phase electrolysis processes: comparison with or without gravity[J]. Journal of Applied Electrochemistry, 2013, 43(12): 1145-1161 doi: 10.1007/s10800-013-0598-2
    [58]
    程俊. 不同重力下质子交换膜电解池性能及其内部两相流研究[D]. 北京: 北京工业大学, 2015

    CHENG Jun. Study of Performance and Two-Phase Flow of PEM Electrolyzer Under Different Gravity Conditions[D]. Beijing: Beijing University of Technology, 2015
    [59]
    MANDIN Philippe, DERHOUMI Zine, ROUSTAN Hervé, et al. Bubble over-potential during two-phase alkaline water electrolysis[J]. Electrochimica Acta, 2014, 128: 248-258 doi: 10.1016/j.electacta.2013.11.068
    [60]
    BRINKERT Katharina, RICHTER Matthias H, AKAY Ömer, et al. Efficient solar hydrogen generation in microgravity environment[J]. Nature Communications, 2018, 9(1): 2527 doi: 10.1038/s41467-018-04844-y
    [61]
    BRINKERT Katharina, AKAY Ömer, RICHTER Matthias H, et al. Experimental methods for efficient solar hydrogen production in microgravity environment[J]. Journal of Visualized Experiments: Jove, 2019(154): 59122
    [62]
    张策, 杨金禄, 尹钊, 等. 基于仿生功能器件的地外水分解制氢技术[J]. 中国空间科学技术, 2023, 43(6): 83-90

    ZHANG Ce, YANG Jinlu, YIN Zhao, et al. Extraterrestrial hydrogen production technology based on bionic functional water splitting devices[J]. Chinese Space Science and Technology, 2023, 43(6): 83-90
    [63]
    SAKUMA Go, FUKUNAKA Yasuiro, MATSUSHIMA Hisayoshi. Nucleation and growth of electrolytic gas bubbles under microgravity[J]. International Journal of Hydrogen Energy, 2014, 39(15): 7638-7645 doi: 10.1016/j.ijhydene.2014.03.059
    [64]
    AKAY Ömer, POON Jeffery, ROBERTSON Craig, et al. Releasing the bubbles: nanotopographical electrocatalyst design for efficient photoelectrochemical hydrogen production in microgravity environment[J]. Advanced Science, 2022, 9(8): 2105380 doi: 10.1002/advs.202105380
    [65]
    重庆大学. 一种微重力磁场驱动强化电解水制氧/制氢的装置: CN, 201610553399.5[P]. 2016-11-23

    Chongqing University. Device for driving and enhancing electrolytic water through microgravity magnetic field for oxygen production/hydrogen production: CN, 201610553399.5[P]. 2016-11-23
    [66]
    航天神舟生物科技集团有限公司. 空间微重力环境下的氢分子水制备装置和方法: CN, 201810882126.4[P]. 2019-01-01

    Shenzhou Tianchen Technology Industry Co. Ltd. Hydrogen molecule water preparation device and method under space microgravity environment: CN, 201810882126.4[P]. 2019-01-01
    [67]
    赵建福, 彭超, 李晶, 等. 静态水气分离特性的失重飞机实验研究[J]. 工程热物理学报, 2011, 32(5): 799-802

    ZHAO Jianfu, PENG Chao, LI Jing, et al. Experimental study on performance of a static water-air two-phase separator aboard reduced gravity airplane[J]. Journal of Engineering Thermophysics, 2011, 32(5): 799-802
    [68]
    CHENG H, SCOTT K, RAMSHAW C. Intensification of water electrolysis in a centrifugal field[J]. Journal of the Electrochemical Society, 2002, 149(11): D172 doi: 10.1149/1.1512916
    [69]
    王明涌. 超重力强化电解制氢及电沉积高效析氢电极[D]. 北京: 中国科学院大学, 2011

    WANG Mingyong. Intensified Electrolysis for Hydrogen Production and Electrodeposition of Electrode Materials with Excellent Properties for Hydrogen Evolution Reaction Under Super Gravity Field[D]. Beijing: University of Chinese Academy of Sciences, 2011
    [70]
    WANG Mingyong, WANG Zhi, GUO Zhancheng. Understanding of the intensified effect of super gravity on hydrogen evolution reaction[J]. International Journal of Hydrogen Energy, 2009, 34(13): 5311-5317 doi: 10.1016/j.ijhydene.2009.05.043
    [71]
    WANG Mingyong, WANG Zhi, GUO Zhancheng. Water electrolysis enhanced by super gravity field for hydrogen production[J]. International Journal of Hydrogen Energy, 2010, 35(8): 3198-3205 doi: 10.1016/j.ijhydene.2010.01.128
    [72]
    王明涌, 邢海青, 王志, 等. 超重力强化氯碱电解反应[J]. 物理化学学报, 2008, 24(3): 520-526 doi: 10.3866/PKU.WHXB20080330

    WANG Mingyong, XING Haiqing, WANG Zhi, et al. Investigation of chlor-alkali electrolysis intensified by super gravity[J]. Acta Physico-Chimica Sinica, 2008, 24(3): 520-526 doi: 10.3866/PKU.WHXB20080330
    [73]
    邱鑫乐, 孟龙, 钟怡玮, 等. 超重力对镍电极电解制氢的强化研究[J]. 有色金属科学与工程, 2018, 9(6): 11-17

    QIU Xinle, MENG Long, ZHONG Yiwei, et al. Effect of super gravity on the hydrogen production enhancement by nickel electrode electrolysis[J]. Nonferrous Metals Science and Engineering, 2018, 9(6): 11-17
    [74]
    余瑜, 邱鑫乐, 钟怡玮, 等. 超重力场–电解液循环耦合强化水电解制氢[J]. 江西冶金, 2021, 41(3): 10-14

    YU Yu, QIU Xinle, ZHONG Yiwei, et al. Enhancing water electrolysis for hydrogen production by coupling super gravity field and electrolyte[J]. Jiangxi Metallurgy, 2021, 41(3): 10-14
    [75]
    LAO L, RAMSHAW C, YEUNG H. Process intensification: water electrolysis in a centrifugal acceleration field[J]. Journal of Applied Electrochemistry, 2011, 41(6): 645-656 doi: 10.1007/s10800-011-0275-2
    [76]
    郭越玖. 一种超旋转离心重力水电解制氢方法及装置: CN, 201210518651.0[P]. 2013-03-20

    GUO Yuejiu. Water electrolysis hydrogen preparing method and device employing super-rotating centrifugal gravity: CN, 201210518651.0[P]. 2013-03-20
    [77]
    ARSAILS Alexandros, PAPANASTASIOU Panos, GEORGHIOU George E. A comparative review of lithium-ion battery and regenerative hydrogen fuel cell technologies for integration with photovoltaic applications[J]. Renewable Energy, 2022, 191: 943-960 doi: 10.1016/j.renene.2022.04.075
    [78]
    中国科学院大连化学物理研究所. 一种可再生燃料电池: CN, 201811527777.8[P]. 2020-06-23

    Dalian Institute of Chemical Physics Chinese Academy of Sciences. Renewable fuel cell: CN, 201811527777.8[P]. 2020-06-23
    [79]
    北京航天动力研究所. 一种高压大流量微重力离心气液分离装置: CN, 201610169496.4[P]. 2016-06-08

    Beijing Aerospace Propulsion Institute. High-pressure high-flow microgravity centrifugal gas and liquid separation device: CN, 201610169496.4[P]. 2016-06-08
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(2)

    Article Metrics

    Article Views(611) PDF Downloads(15) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return