Citation: | LI Zihang, YU Ruijiao, YE Fang, DU Wangfang, CHEN Hao, GUO Hang. Experimental Research Progress on Fuel Cells and Electrolytic Cells under Unconventional Gravity (in Chinese). Chinese Journal of Space Science, 2025, 45(5): 1-12 doi: 10.11728/cjss2025.05.2024-0157 |
[1] |
吴峰, 叶芳, 郭航, 等. 燃料电池在航天中的应用[J]. 电池, 2007, 37(3): 238-240
WU Feng, YE Fang, GUO Hang, et al. The application of fuel cells in aerospace[J]. Battery Bimonthly, 2007, 37(3): 238-240
|
[2] |
杨紫光, 叶芳, 郭航, 等. 航天电源技术研究进展[J]. 化工进展, 2012, 31(6): 1231-1237
YANG Ziguang, YE Fang, GUO Hang, et al. Progress of space power technology[J]. Chemical Industry and Engineering Progress, 2012, 31(6): 1231-1237
|
[3] |
SCOTT John H. The development of fuel cell technology for electric power generation: from NASA's manned space program to the “Hydrogen Economy”[J]. Proceedings of the IEEE, 2006, 94(10): 1815-1825 doi: 10.1109/JPROC.2006.883702
|
[4] |
周洁, 郑颖平, 谢吉虹. 制氢技术研究进展及在燃料电池中的应用前景[J]. 化工时刊, 2007, 21(5): 71-75
ZHOU Jie, ZHENG Yingping, XIE Jihong. Recent advances in hydrogen generation methods and its prospects for applications in fuel cell[J]. Chemical Industry Times, 2007, 21(5): 71-75
|
[5] |
KABIROV V A, SEMENOV V D, TORGAEVA D S, et al. Miniaturization of spacecraft electrical power systems with solar-hydrogen power supply system[J]. International Journal of Hydrogen Energy, 2023, 48(24): 9057-9070 doi: 10.1016/j.ijhydene.2022.12.087
|
[6] |
BELZ S, GANZER B, MESSERSCHMID E, et al. Hybrid life support systems with integrated fuel cells and photobioreactors for a lunar base[J]. Aerospace Science and Technology, 2013, 24(1): 169-176 doi: 10.1016/j.ast.2011.11.004
|
[7] |
MENG Long, WANG Zhe, WANG Lu, et al. Novel and efficient purification of scrap Al-Mg alloys using supergravity technology[J]. Waste Management, 2021, 119: 22-29 doi: 10.1016/j.wasman.2020.09.027
|
[8] |
许思宇, 李海兵, 尹钊. “国际空间站”环境控制与生命保障系统技术升级分析[J]. 中国航天, 2024(4): 17-24
XU Siyu, LI Haibing, YIN Zhao. Analysis on the technical upgrades to the international space station environmental control and life support system[J]. Aerospace China, 2024(4): 17-24
|
[9] |
裴照宇, 彭兢, 张明, 等. 月球科研站能源系统关键技术及发展趋势[J]. 中国电机工程学报, 2023, 43(22): 8689-8700
PEI Zhaoyu, PENG Jing, ZHANG Ming, et al. Key technologies and development trend of power system for international lunar research station[J]. Proceedings of the CSEE, 2023, 43(22): 8689-8700
|
[10] |
康琦, 侯瑞. 微重力流体管理在航天工程中的应用[J]. 自然杂志, 2007, 29(6): 328-335
KANG Qi, HOU Rui. The applications of microgravity fluid management in the aerospace engineering[J]. Chinese Journal of Nature, 2007, 29(6): 328-335
|
[11] |
韩淋, 王海名, 范唯唯, 等. 2020年国际空间站科研与应用进展[J]. 载人航天, 2021, 27(4): 530-536
HAN Lin, WANG Haiming, FAN Weiwei, et al. Progress of scientific research and application on the international space station in 2020[J]. Manned Spaceflight, 2021, 27(4): 530-536
|
[12] |
DE VET S J, RUTGERS R. From waste to energy: first experimental bacterial fuel cells onboard the international space station[J]. Microgravity Science and Technology, 2007, 19(5/6): 225-229
|
[13] |
付毅飞. 我国首台空间应用燃料电池升空[N]. 科技日报, 2022-11-14(005
|
[14] |
STARR Michelle. Breathe deep: how the ISS keeps astronauts alive[EB/OL]. (2015-03-19)[2024-11-07]https://www.cnet.com/science/breathe-deep-how-the-iss-keeps-astronauts-alive/
|
[15] |
李俊荣, 尹永利, 周抗寒, 等. 空间站电解制氧技术研究进展[J]. 航天医学与医学工程, 2013, 26(3): 215-220
LI Junrong, YIN Yongli, ZHOU Kanghan, et al. Progress of oxygen generation technology by water electrolysis in space station[J]. Space Medicine :Times New Roman;">& Medical Engineering, 2013, 26(3): 215-220
|
[16] |
资源再生系统助力空间站长期运行[J]. 中国科学探险, 2022(4): 28-29
|
[17] |
韦明罡, 万士昕, 姚康庄, 等. 国家微重力实验室落塔及微重力实验研究[J]. 载人航天, 2007(4): 1-3,22
|
[18] |
China) (NMLC)[J]. Science in China Series E Engineering & Materials Science, 2005, 48(3): 305-316 (张孝谦, 袁龙根, 吴文东, 等. 国家微重力实验室百米落塔实验设施的几项关键技术[J]. 中国科学 E辑, 2005, 35(5): 523-534
ZHANG Xiaoqian, YUAN Longgen, WU Wendong, et al. Some key technics of drop tower experiment device of National Microgravity Laboratory
|
[19] |
KUFNER Ewald, BLUM J, CALLENS N, et al. ESA’s drop tower utilisation activities 2000 to 2011[J]. Microgravity Science and Technology, 2011, 23(4): 409-425 doi: 10.1007/s12217-011-9261-x
|
[20] |
LEKAN Jack, NEUMANN Eric S, SOTOS Raymond G. Capabilities and constraints of NASA's ground-based reduced gravity facilities[C]//The Second International Microgravity Combustion Workshop. Cleveland, Ohio, USA: NASA Lewis Research Center, 1993: 45-60
|
[21] |
屈斌, 王启, 王海平, 等. 失重飞机飞行方法研究[J]. 飞行力学, 2007, 25(2): 65-67,71
QU Bin, WANG Qi, WANG Haiping, et al. Zero-g aircraft flight method research[J]. Flight Dynamics, 2007, 25(2): 65-67,71
|
[22] |
田大可, 范小东, 郑夕健, 等. 空间可展开天线微重力环境模拟研究现状与展望[J]. 机械工程学报, 2021, 57(3): 11-25
TIAN Dake, FAN Xiaodong, ZHENG Xijian, et al. Research status and prospect of micro-gravity environment simulation for space deployable antenna[J]Journal of Mechanical Engineering, 2021, 57(3): 11-25
|
[23] |
朱战霞, 袁建平. 航天器操作的微重力环境构建[M]. 北京: 中国宇航出版社, 2013
ZHU Zhanxia, YUAN Jianping. Construction of Microgravity Environment for Spacecraft Operation[M]. Beijing: China Aerospace Press, 2013
|
[24] |
PLETSER Vlafimir. Short duration microgravity experiments in physical and life sciences during parabolic flights: the first 30 ESA campaigns[J]. Acta Astronautica, 2004, 55(10): 829-854 doi: 10.1016/j.actaastro.2004.04.006
|
[25] |
林伟岸, 李俊超, 赵宇, 等. ZJU400超重力离心机系统开放共享探讨[J]. 实验技术与管理, 2019, 36(11): 282-285
LIN Wei’an, LI Junchao, ZHAO Yu, et al. Exploration on opening and sharing of ZJU400 hypergravity centrifuge system[J]. Experimental Technology and Management, 2019, 36(11): 282-285
|
[26] |
LOMAX Bethane A, JUST Gunter H, MCHUGH Patrick J, et al. Predicting the efficiency of oxygen-evolving electrolysis on the Moon and Mars[J]. Nature Communications, 2022, 13(1): 583 doi: 10.1038/s41467-022-28147-5
|
[27] |
MEHTA Viral, COOPER Joyce Smith. Review and analysis of PEM fuel cell design and manufacturing[J]. Journal of Power Sources, 2003, 114(1): 32-53 doi: 10.1016/S0378-7753(02)00542-6
|
[28] |
DUBALE Amare Aregahegn, ZHENG Yuanyuan, WANG Honglei, et al. High-performance bismuth-doped nickel aerogel electrocatalyst for the methanol oxidation reaction[J]. Angewandte Chemie International Edition, 2020, 59(33): 13891-13899 doi: 10.1002/anie.202004314
|
[29] |
赵建福, 郭航, 叶芳, 等. DMFC内部气液两相流动与电性能的短时落塔实验研究[J]. 空间科学学报, 2008, 28(1): 17-21 doi: 10.11728/cjss2008.01.017
ZHAO Jianfu, GUO Hang, YE Fang, et al. Experimental study on two-phase flow and power performance of DMFC utilizing the Drop Tower Beijing[J]. Chinese Journal of Space Science, 2008, 28(1): 17-21 doi: 10.11728/cjss2008.01.017
|
[30] |
GUO Hang, ZHAO Jianfu, YE Fang, et al. Two-phase flow in fuel cells in short-term microgravity condition[J]. Microgravity Science and Technology, 2008, 20(3/4): 265-269
|
[31] |
叶芳, 赵建福, 律翠萍, 等. 燃料电池短时微重力条件下两相流研究[C]//2007多相流学术会议论文集. 大庆: 中国工程热物理学会, 2007: 44-51
YE Fang, ZHAO Jianfu, LÜ Cuiping, et al. Study of two-phase flow in fuel cells under short-term microgravity[C]//Proceedings of Annual Conference of Multi-Phase Flow. Daqing: Chinese Society of Engineering Thermophysics, 2007: 44-51
|
[32] |
郭航, 赵建福, 律翠萍, 等. 短时微重力条件下燃料电池性能实验研究[J]. 工程热物理学报, 2008, 29(5): 865-867
GUO Hang, ZHAO Jianfu, LÜ Cuiping, et al. Experimental study of fuel cells performance in short term microgravity condition[J]. Journal of Engineering Thermophysics, 2008, 29(5): 865-867
|
[33] |
徐龙云. 基于固态电解质的电解池及燃料电池性能研究[D]. 北京: 北京工业大学, 2013
XU Longyun. Study of Performance of Fuel Cells and electrolytic Cells Based on Solid Electrolyt[D]. Beijing: Beijing University of Technology, 2013
|
[34] |
GUO Hang, WU Feng, YE Fang, et al. Two-phase flow in anode flow field of a small direct methanol fuel cell in different gravities[J]. Science in China Series E: Technological Sciences, 2009, 52(6): 1576-1582 doi: 10.1007/s11431-009-0179-0
|
[35] |
YE Fang, WU Feng, ZHAO Jianfu, et al. Experimental investigation of performance of a miniature direct methanol fuel cell in short-term microgravity[J]. Microgravity Science and Technology, 2010, 22(3): 347-352 doi: 10.1007/s12217-010-9228-3
|
[36] |
BAROUTAJI Ahmad, WILBERFORCE Tabbi, RAMADAN Mohamad, et al. Comprehensive investigation on hydrogen and fuel cell technology in the aviation and aerospace sectors[J]. Renewable and Sustainable Energy Reviews, 2019, 106: 31-40 doi: 10.1016/j.rser.2019.02.022
|
[37] |
郭航, 赵建福, 刘璿, 等. 质子交换膜燃料电池短时微重力性能实验研究[J]. 工程热物理学报, 2009, 30(8): 1376-1378
GUO Hang, ZHAO Jianfu, LIU Xuan, et al. Experimental Study of performance of proton exchange membrane fuel cells in short-term microgravity condition[J]. Journal of Engineering Thermophysics, 2009, 30(8): 1376-1378
|
[38] |
GUO Hang, LIU Xuan, ZHAO Jianfu, et al. Effect of low gravity on water removal inside proton exchange membrane fuel cells (PEMFCs) with different flow channel configurations[J]. Energy, 2016, 112: 926-934 doi: 10.1016/j.energy.2016.07.006
|
[39] |
GUO Hang, LIU Xuan, ZHAO Jianfu, et al. Gas-liquid two-phase flow behaviors and performance characteristics of proton exchange membrane fuel cells in a short-term microgravity environment[J]. Journal of Power Sources, 2017, 353: 1-10 doi: 10.1016/j.jpowsour.2017.03.137
|
[40] |
GUO Hang, LIU Xuan, ZHAO Jianfu, et al. Experimental study of two-phase flow in a proton exchange membrane fuel cell in short-term microgravity condition[J]. Applied Energy, 2014, 136: 509-518 doi: 10.1016/j.apenergy.2014.09.058
|
[41] |
GUO Qing, YE Fang, GUO Hang, et al. Gas/water and heat management of PEM-based fuel cell and electrolyzer systems for space applications[J]. Microgravity Science and Technology, 2017, 29(1/2): 49-63
|
[42] |
ACEVEDO Raul, POVENTUD-ESTRADA Carlos M, MORALES-NAVAS Camila, et al. Chronoamperometric study of ammonia oxidation in a direct ammonia alkaline fuel cell under the influence of microgravity[J]. Microgravity Science and Technology, 2017, 29(4): 253-261 doi: 10.1007/s12217-017-9543-z
|
[43] |
POVENTUD-ESTRADA Carlos M, ACEVEDO Raul, MORALES Camila, et al. Microgravity effects on chronoamperometric ammonia oxidation reaction at platinum nanoparticles on modified mesoporous carbon supports[J]. Microgravity Science and Technology, 2017, 29(5): 381-389 doi: 10.1007/s12217-017-9558-5
|
[44] |
RABAEY L, OSSIEUR W, VERHAEGE M, et al. Continuous microbial fuel cells convert carbohydrates to electricity[J]. Water Science and Technology, 2005, 52(1/2): 515-523
|
[45] |
倪萌, LEUNG M K H, SUMATHY K. 电解水制氢技术进展[J]. 能源环境保护, 2004, 18(5): 5-9
NI Meng, LEUNG M K H, SUMATHY K. Progress of hydrogen production through water electrolysis[J]. Energy Environmental Protection, 2004, 18(5): 5-9
|
[46] |
王飞, 周抗寒, 管春磊, 等. PEM水电解技术在航天上的应用现状与发展趋势[J]. 上海航天(中英文), 2020, 37(2): 23-29
WANG Fei, ZHOU Kanghan, GUAN Chunlei, et al. Application status and development of PEM water electrolysis in aerospace field[J]. Aerospace Shanghai (Chinese :Times New Roman;">& English), 2020, 37(2): 23-29
|
[47] |
曾庆堂, 郑传先. 空间站水电解制氧技术[J]. 航天医学与医学工程, 1990, 3(3): 222-226
|
[48] |
周抗寒, 韩永强, 李俊荣. 空间站电解制氧技术研究[J]. 载人航天, 2003(5): 25-29
|
[49] |
IWASAKI A, KANEKO H, ABE Y, et al. Investigation of electrochemical hydrogen evolution under microgravity condition[J]. Electrochimica Acta, 1998, 43(5/6): 509-514
|
[50] |
SAKURAI Masato, SONE Yoshitsugu, NISHIDA Tetsuo, et al. Fundamental study of water electrolysis for life support system in space[J]. Electrochimica Acta, 2013, 100: 350-357 doi: 10.1016/j.electacta.2012.11.112
|
[51] |
KIUCHI Daisuke, MATSUSHIMA Hisayoshi, FUKUNAKA Yasuhiro, et al. Ohmic resistance measurement of bubble froth layer in water electrolysis under microgravity[J]. Journal of The Electrochemical Society, 2006, 153(8): E138-E143 doi: 10.1149/1.2207008
|
[52] |
KANEKO Hiroko, TANAKA Kotaro, IWASAKI Akira, et al. Water electrolysis under microgravity condition by parabolic flight[J]. Electrochimica Acta, 1993, 38(5): 729-733 doi: 10.1016/0013-4686(93)80245-U
|
[53] |
MATSUSHIMA H, NISHIDA T, KONISHI Y, et al. Water electrolysis under microgravity: part 1. experimental technique[J]. Electrochimica Acta, 2003, 48(28): 4119-4125 doi: 10.1016/S0013-4686(03)00579-6
|
[54] |
MATSUSHIMA H, FUKUNAKA Y, KURIBAYASHI K. Water electrolysis under microgravity: part II. description of gas bubble evolution phenomena[J]. Electrochimica Acta, 2006, 51(20): 4190-4198 doi: 10.1016/j.electacta.2005.11.046
|
[55] |
MATSUSHIMA Hisayoshi, KIUCHI Daisuke, FUKUNAKA Yasuhiro, et al. Single bubble growth during water electrolysis under microgravity[J]. Electrochemistry Communications, 2009, 11(8): 1721-1723 doi: 10.1016/j.elecom.2009.07.009
|
[56] |
BASHKATOV Aleksandr, YANG Xuegeng, MUTSCHKE Gerd, et al. Dynamics of single hydrogen bubbles at Pt microelectrodes in microgravity[J]. Physical Chemistry Chemical Physics, 2021, 23(20): 11818-11830 doi: 10.1039/D1CP00978H
|
[57] |
DERHOUMI Zine, MANDIN Philippe, ROUSTAN Hervé, et al. Experimental investigation of two-phase electrolysis processes: comparison with or without gravity[J]. Journal of Applied Electrochemistry, 2013, 43(12): 1145-1161 doi: 10.1007/s10800-013-0598-2
|
[58] |
程俊. 不同重力下质子交换膜电解池性能及其内部两相流研究[D]. 北京: 北京工业大学, 2015
CHENG Jun. Study of Performance and Two-Phase Flow of PEM Electrolyzer Under Different Gravity Conditions[D]. Beijing: Beijing University of Technology, 2015
|
[59] |
MANDIN Philippe, DERHOUMI Zine, ROUSTAN Hervé, et al. Bubble over-potential during two-phase alkaline water electrolysis[J]. Electrochimica Acta, 2014, 128: 248-258 doi: 10.1016/j.electacta.2013.11.068
|
[60] |
BRINKERT Katharina, RICHTER Matthias H, AKAY Ömer, et al. Efficient solar hydrogen generation in microgravity environment[J]. Nature Communications, 2018, 9(1): 2527 doi: 10.1038/s41467-018-04844-y
|
[61] |
BRINKERT Katharina, AKAY Ömer, RICHTER Matthias H, et al. Experimental methods for efficient solar hydrogen production in microgravity environment[J]. Journal of Visualized Experiments: Jove, 2019(154): 59122
|
[62] |
张策, 杨金禄, 尹钊, 等. 基于仿生功能器件的地外水分解制氢技术[J]. 中国空间科学技术, 2023, 43(6): 83-90
ZHANG Ce, YANG Jinlu, YIN Zhao, et al. Extraterrestrial hydrogen production technology based on bionic functional water splitting devices[J]. Chinese Space Science and Technology, 2023, 43(6): 83-90
|
[63] |
SAKUMA Go, FUKUNAKA Yasuiro, MATSUSHIMA Hisayoshi. Nucleation and growth of electrolytic gas bubbles under microgravity[J]. International Journal of Hydrogen Energy, 2014, 39(15): 7638-7645 doi: 10.1016/j.ijhydene.2014.03.059
|
[64] |
AKAY Ömer, POON Jeffery, ROBERTSON Craig, et al. Releasing the bubbles: nanotopographical electrocatalyst design for efficient photoelectrochemical hydrogen production in microgravity environment[J]. Advanced Science, 2022, 9(8): 2105380 doi: 10.1002/advs.202105380
|
[65] |
重庆大学. 一种微重力磁场驱动强化电解水制氧/制氢的装置: CN, 201610553399.5[P]. 2016-11-23
Chongqing University. Device for driving and enhancing electrolytic water through microgravity magnetic field for oxygen production/hydrogen production: CN, 201610553399.5[P]. 2016-11-23
|
[66] |
航天神舟生物科技集团有限公司. 空间微重力环境下的氢分子水制备装置和方法: CN, 201810882126.4[P]. 2019-01-01
Shenzhou Tianchen Technology Industry Co. Ltd. Hydrogen molecule water preparation device and method under space microgravity environment: CN, 201810882126.4[P]. 2019-01-01
|
[67] |
赵建福, 彭超, 李晶, 等. 静态水气分离特性的失重飞机实验研究[J]. 工程热物理学报, 2011, 32(5): 799-802
ZHAO Jianfu, PENG Chao, LI Jing, et al. Experimental study on performance of a static water-air two-phase separator aboard reduced gravity airplane[J]. Journal of Engineering Thermophysics, 2011, 32(5): 799-802
|
[68] |
CHENG H, SCOTT K, RAMSHAW C. Intensification of water electrolysis in a centrifugal field[J]. Journal of the Electrochemical Society, 2002, 149(11): D172 doi: 10.1149/1.1512916
|
[69] |
王明涌. 超重力强化电解制氢及电沉积高效析氢电极[D]. 北京: 中国科学院大学, 2011
WANG Mingyong. Intensified Electrolysis for Hydrogen Production and Electrodeposition of Electrode Materials with Excellent Properties for Hydrogen Evolution Reaction Under Super Gravity Field[D]. Beijing: University of Chinese Academy of Sciences, 2011
|
[70] |
WANG Mingyong, WANG Zhi, GUO Zhancheng. Understanding of the intensified effect of super gravity on hydrogen evolution reaction[J]. International Journal of Hydrogen Energy, 2009, 34(13): 5311-5317 doi: 10.1016/j.ijhydene.2009.05.043
|
[71] |
WANG Mingyong, WANG Zhi, GUO Zhancheng. Water electrolysis enhanced by super gravity field for hydrogen production[J]. International Journal of Hydrogen Energy, 2010, 35(8): 3198-3205 doi: 10.1016/j.ijhydene.2010.01.128
|
[72] |
王明涌, 邢海青, 王志, 等. 超重力强化氯碱电解反应[J]. 物理化学学报, 2008, 24(3): 520-526 doi: 10.3866/PKU.WHXB20080330
WANG Mingyong, XING Haiqing, WANG Zhi, et al. Investigation of chlor-alkali electrolysis intensified by super gravity[J]. Acta Physico-Chimica Sinica, 2008, 24(3): 520-526 doi: 10.3866/PKU.WHXB20080330
|
[73] |
邱鑫乐, 孟龙, 钟怡玮, 等. 超重力对镍电极电解制氢的强化研究[J]. 有色金属科学与工程, 2018, 9(6): 11-17
QIU Xinle, MENG Long, ZHONG Yiwei, et al. Effect of super gravity on the hydrogen production enhancement by nickel electrode electrolysis[J]. Nonferrous Metals Science and Engineering, 2018, 9(6): 11-17
|
[74] |
余瑜, 邱鑫乐, 钟怡玮, 等. 超重力场–电解液循环耦合强化水电解制氢[J]. 江西冶金, 2021, 41(3): 10-14
YU Yu, QIU Xinle, ZHONG Yiwei, et al. Enhancing water electrolysis for hydrogen production by coupling super gravity field and electrolyte[J]. Jiangxi Metallurgy, 2021, 41(3): 10-14
|
[75] |
LAO L, RAMSHAW C, YEUNG H. Process intensification: water electrolysis in a centrifugal acceleration field[J]. Journal of Applied Electrochemistry, 2011, 41(6): 645-656 doi: 10.1007/s10800-011-0275-2
|
[76] |
郭越玖. 一种超旋转离心重力水电解制氢方法及装置: CN, 201210518651.0[P]. 2013-03-20
GUO Yuejiu. Water electrolysis hydrogen preparing method and device employing super-rotating centrifugal gravity: CN, 201210518651.0[P]. 2013-03-20
|
[77] |
ARSAILS Alexandros, PAPANASTASIOU Panos, GEORGHIOU George E. A comparative review of lithium-ion battery and regenerative hydrogen fuel cell technologies for integration with photovoltaic applications[J]. Renewable Energy, 2022, 191: 943-960 doi: 10.1016/j.renene.2022.04.075
|
[78] |
中国科学院大连化学物理研究所. 一种可再生燃料电池: CN, 201811527777.8[P]. 2020-06-23
Dalian Institute of Chemical Physics Chinese Academy of Sciences. Renewable fuel cell: CN, 201811527777.8[P]. 2020-06-23
|
[79] |
北京航天动力研究所. 一种高压大流量微重力离心气液分离装置: CN, 201610169496.4[P]. 2016-06-08
Beijing Aerospace Propulsion Institute. High-pressure high-flow microgravity centrifugal gas and liquid separation device: CN, 201610169496.4[P]. 2016-06-08
|