Turn off MathJax
Article Contents
WANG Hao, XU Haiyu, WANG Tianye, BIAN Zhiqiang, YAN Kui, ZHANG Lichang. On-orbit Identification and Compensation for Deformation Errors of Two-demensional Adjusment Solar Observation System (in Chinese). Chinese Journal of Space Science, 2026, 46(1): 1-8 doi: 10.11728/cjss2026.01.2025-0016
Citation: WANG Hao, XU Haiyu, WANG Tianye, BIAN Zhiqiang, YAN Kui, ZHANG Lichang. On-orbit Identification and Compensation for Deformation Errors of Two-demensional Adjusment Solar Observation System (in Chinese). Chinese Journal of Space Science, 2026, 46(1): 1-8 doi: 10.11728/cjss2026.01.2025-0016

On-orbit Identification and Compensation for Deformation Errors of Two-demensional Adjusment Solar Observation System

doi: 10.11728/cjss2026.01.2025-0016 cstr: 32142.14.cjss.2025-0016
  • Received Date: 2025-01-14
  • Rev Recd Date: 2025-05-26
  • Available Online: 2025-05-27
  • Aiming at the problem of optical axis pointing deviation caused by the internal deformation errors of the satellite’s solar observation system with two-dimensional adjustment, an on-orbit identification and compensation method for the deformation errors is proposed. Firstly, the mathematical modeling for the light path transfer process of the solar observation system is established. Secondly, the on-orbit identification and compensation method for the deformation error parameters in the mathematical model is given. Finally, the identification and compensation methods are simulated by mathematical simulation. The compensation effect is evaluated with the optical axis pointing accuracy as the evaluation standard. The simulation results show that the pointing accuracy of the solar observation payload's optical axis is improved by two orders of magnitude before and after the on-orbit compensation for the deformation error, which verifies the effectiveness of the proposed method. The results can be used as a reference for other payloads with a two-dimensional adjustment mechanism.

     

  • loading
  • [1]
    ZHANG Wei, CHEN Pengfei. Present situation and prospect of space solar exploration technology[J]. Science and Technology Foresight, 2022, 1(1): 28-37 (张伟, 陈鹏飞. 空间太阳探测技术的发展现状与展望[J]. 前瞻科技, 2022, 1(1): 28-37

    ZHANG Wei, CHEN Pengfei. Present situation and prospect of space solar exploration technology[J]. Science and Technology Foresight, 2022, 1(1): 28-37
    [2]
    BAI Xianyong, TIAN Hui, DENG Yuanyong, et al. Current status and future perspectives of solar spectroscopic observations at extreme ultraviolet wavelengths[J]. Chinese Journal of Space Science, 2023, 43(3): 406-422 (白先勇, 田晖, 邓元勇, 等. 太阳极紫外光谱探测的历史与展望[J]. 空间科学学报, 2023, 43(3): 406-422 doi: 10.11728/cjss2023.03.220125010

    BAI Xianyong, TIAN Hui, DENG Yuanyong, et al. Current status and future perspectives of solar spectroscopic observations at extreme ultraviolet wavelengths[J]. Chinese Journal of Space Science, 2023, 43(3): 406-422 doi: 10.11728/cjss2023.03.220125010
    [3]
    LIU Yang. Research on Displacement Measurement Theory in Local Field of Solar Extrem Ultraviolet Bands[D]. Changchun: The University of Chinese Academy of Sciences (Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences), 2020 (刘阳. 太阳极紫外图像局部场中的位移测量方法研究[D]. 长春: 中国科学院大学 (中国科学院长春光学精密机械与物理研究所), 2020

    LIU Yang. Research on Displacement Measurement Theory in Local Field of Solar Extrem Ultraviolet Bands[D]. Changchun: The University of Chinese Academy of Sciences (Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences), 2020
    [4]
    Shanghai Institute of Satellite Engineering. Solar observation two-dimensional pointing mechanism thermal deformation on-orbit identification method and systemX[P]. CN202311706344.2024-03-22 (上海卫星工程研究所. 太阳观测二维指向机构热变形在轨辨识方法及系统X[P]. 中国专利: CN202311706344.2024-03-22

    Shanghai Institute of Satellite Engineering. Solar observation two-dimensional pointing mechanism thermal deformation on-orbit identification method and systemX[P]. CN202311706344.2024-03-22
    [5]
    ZHANG Huan, LIU Zhiquan, YU Chunyu, et al. Thermal stability design and verification of optical bench structure of geomagnetic survey satellite[J]. Journal of Astronautics, 2023, 44(10): 1604-1612 (张欢, 刘志全, 于春宇, 等. 地磁测量卫星光学平台结构热稳定性设计与校验[J]. 宇航学报, 2023, 44(10): 1604-1612

    ZHANG Huan, LIU Zhiquan, YU Chunyu, et al. Thermal stability design and verification of optical bench structure of geomagnetic survey satellite[J]. Journal of Astronautics, 2023, 44(10): 1604-1612
    [6]
    WANG Qinglei, SUN Shijun, JIANG Hongjia, et al. High-precision thermal deformation measurement of optical remote sensor optical-mechanical structure[J]. Optics and Precision Engineering, 2022, 30(8): 948-959 (王庆雷, 孙世君, 姜宏佳, 等. 光学遥感器光机结构热变形的高精度测量[J]. 光学 精密工程, 2022, 30(8): 948-959 doi: 10.37188/OPE.20223008.0948

    WANG Qinglei, SUN Shijun, JIANG Hongjia, et al. High-precision thermal deformation measurement of optical remote sensor optical-mechanical structure[J]. Optics and Precision Engineering, 2022, 30(8): 948-959 doi: 10.37188/OPE.20223008.0948
    [7]
    GE Huanyu, XIAO Zhenghang, WANG Yue. Research on cryogenic lens support structures based on a bi-material system for thermal deformation compensation[J]. Spacecraft Recovery :Times New Roman;">& Remote Sensing, 2022, 43(3): 69-76 (葛桓宇, 肖正航, 王跃. 基于热变形补偿的双材料低温镜头支撑结构研究[J]. 航天返回与遥感, 2022, 43(3): 69-76

    GE Huanyu, XIAO Zhenghang, WANG Yue. Research on cryogenic lens support structures based on a bi-material system for thermal deformation compensation[J]. Spacecraft Recovery & Remote Sensing, 2022, 43(3): 69-76
    [8]
    CARR J L. Twenty-five years of INR[J]. The Journal of the Astronautical Sciences, 2009, 57(1/2): 505-515 doi: 10.1007/bf03321514
    [9]
    SHEN Yili, LV Wang, YU Yongjiang, et al. Research of imager scan mirror’s thermal distortion model for image navigation and registration[J]. Aerospace Shanghai, 2014, 31(2): 26-29,72 (沈毅力, 吕旺, 于永江, 等. 用于图像定位与配准的扫描辐射计扫描镜热变形模型研究[J]. 上海航天, 2014, 31(2): 26-29,72 doi: 10.19328/j.cnki.1006-1630.2014.02.005

    SHEN Yili, LV Wang, YU Yongjiang, et al. Research of imager scan mirror’s thermal distortion model for image navigation and registration[J]. Aerospace Shanghai, 2014, 31(2): 26-29,72 doi: 10.19328/j.cnki.1006-1630.2014.02.005
    [10]
    LYU Wang, WANG Tianshu, DONG Yaohai, et al. Imaging navigation and registration for geostationary imager[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(12): 2175-2179 doi: 10.1109/LGRS.2017.2657578
    [11]
    GONG Jianya, WANG Mi, YANG Bo. High-precision geometric processing theory and method of high-resolution optical remote sensing satellite imagery without GCP[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1255-1261 (龚健雅, 王密, 杨博. 高分辨率光学卫星遥感影像高精度无地面控制精确处理的理论与方法[J]. 测绘学报, 2017, 46(10): 1255-1261

    GONG Jianya, WANG Mi, YANG Bo. High-precision geometric processing theory and method of high-resolution optical remote sensing satellite imagery without GCP[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1255-1261
    [12]
    AN Chengjin, LI Zhen, CHEN Jun, et al. Sequential image geometric correction of area array camera using equivalent bias angle sparse measurement[J]. Journal of National University of Defense Technology, 2023, 45(5): 164-172 (安成锦, 李振, 陈军, 等. 使用等效偏移角稀疏测量的面阵相机序贯图像几何校正[J]. 国防科技大学学报, 2023, 45(5): 164-172

    AN Chengjin, LI Zhen, CHEN Jun, et al. Sequential image geometric correction of area array camera using equivalent bias angle sparse measurement[J]. Journal of National University of Defense Technology, 2023, 45(5): 164-172
    [13]
    PI Yingdong, XIE Baorong, YANG Bo, et al. On-orbit geometric calibration of linear push-broom optical satellite only using sparse GCPs[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(2): 216-225 (皮英冬, 谢宝蓉, 杨博, 等. 利用稀少控制点的线阵推扫式光学卫星在轨几何定标方法[J]. 测绘学报, 2019, 48(2): 216-225

    PI Yingdong, XIE Baorong, YANG Bo, et al. On-orbit geometric calibration of linear push-broom optical satellite only using sparse GCPs[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(2): 216-225
    [14]
    WEI M S, XING F, YOU Z. An implementation method based on ERS imaging mode for sun sensor with 1 kHz update rate and 1″ precision level[J]. Optics Express, 2013, 21(26): 32524-32533 doi: 10.1364/OE.21.032524
    [15]
    CHANG Ye, ZHANG Jianfu, WANG Weihua, et al. A Sun sensor with high accuracy and high update rate for payload of solar observation[J]. Aerospace Control and Application, 2019, 45(6): 53-59 (常晔, 张建福, 王伟华, 等. 一种用于对日观测载荷的高精度高更新率太阳敏感器[J]. 空间控制技术与应用, 2019, 45(6): 53-59 doi: 10.3969/j.issn.1674-1579.2019.06.008

    CHANG Ye, ZHANG Jianfu, WANG Weihua, et al. A Sun sensor with high accuracy and high update rate for payload of solar observation[J]. Aerospace Control and Application, 2019, 45(6): 53-59 doi: 10.3969/j.issn.1674-1579.2019.06.008
    [16]
    YAN G Z, ZHANG J, CHENG Z, et al. Geometric calibration of rotational vision system for dynamic exterior orientation[J]. Instrumentation, 2023, 10(3): 23-33 doi: 10.21203/rs.3.rs-616905/v1
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article Views(172) PDF Downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return