Turn off MathJax
Article Contents
FU Zhiyu, ZHANG Xuequan. Design and Implementation of a High-performance Image Compression Core for Spaceborne Applications (in Chinese). Chinese Journal of Space Science, 2026, 46(1): 1-13 doi: 10.11728/cjss2026.01.2025-0021
Citation: FU Zhiyu, ZHANG Xuequan. Design and Implementation of a High-performance Image Compression Core for Spaceborne Applications (in Chinese). Chinese Journal of Space Science, 2026, 46(1): 1-13 doi: 10.11728/cjss2026.01.2025-0021

Design and Implementation of a High-performance Image Compression Core for Spaceborne Applications

doi: 10.11728/cjss2026.01.2025-0021 cstr: 32142.14.cjss.2025-0021
  • Received Date: 2025-02-14
  • Rev Recd Date: 2025-06-04
  • Available Online: 2025-06-06
  • To address the critical need for efficient image storage and transmission in aerospace applications, this study presents a CCSDS 122.0-B-1-compliant compression core implemented on FPGA. The design incorporates innovative encoding control logic and optimized data organization through co-optimization of algorithmic features and hardware constraints. A segment-based architecture with 256-pixel blocks achieves superior compression efficiency among existing solutions, while effectively containing error propagation through segmented compression. The architecture further enables continuous quality adaptation and progressive image transmission. To resolve performance bottlenecks in scanning and encoding processes, fully parallelized scanning with adaptive parallel encoding was developed, and a 50% efficiency improvement was demonstrated in validation tests. Supporting images up to 4096×4096 pixel with 16-bit depth, the core delivers 90.64×106sample·s–1 throughput, meeting operational requirements for diverse space missions.

     

  • loading
  • [1]
    ZHANG Xuequan. Implementation of Onboard Image Compression System Using FPGA[D]. Beijing: Center for Space Science and Applied Research, Chinese Academy of Sciences, 2009 (张学全. 基于FPGA的星载图像压缩系统实现方法研究[D]. 北京: 中国科学院研究生院(空间科学与应用研究中心), 2009

    ZHANG Xuequan. Implementation of Onboard Image Compression System Using FPGA[D]. Beijing: Center for Space Science and Applied Research, Chinese Academy of Sciences, 2009
    [2]
    ZHU Jianbin, XU Yong, WANG Cuilian, et al. Image compression software design for Zhurong Mars exploration rover[J]. Journal of Deep Space Exploration, 2021, 8(5): 503-510 (朱剑冰, 徐勇, 王翠莲, 等. “祝融号”火星车图像压缩软件的设计与实现[J]. 深空探测学报(中英文), 2021, 8(5): 503-510 doi: 10.15982/j.issn.2096-9287.2021.20210065

    ZHU Jianbin, XU Yong, WANG Cuilian, et al. Image compression software design for Zhurong Mars exploration rover[J]. Journal of Deep Space Exploration, 2021, 8(5): 503-510 doi: 10.15982/j.issn.2096-9287.2021.20210065
    [3]
    CCSDS 122.0-B-1: Image Data Compression[S]. Washington, D. C. : Consultative Committee for Space Data Systems (CCSDS), 2005
    [4]
    KRANITIS N, THEODOROU G, TSIGKANOS A, et al. A reconfigurable FPGA implementation of CCSDS 122.0-B-1 image data compression for ESA PROBA-3 coronagraph system payload[C] //On-Board Payload Data Compression Workshop. Venice: ESA & CNES, 2014
    [5]
    CHANDRAPRABHA K, SHIAK N A, LAKSHMI A, et al. An efficient FPGA implementation of DWT based image data compression system for microsatellites[C]//Proceedings of the 8th International Conference on Advanced Computing and Communication Systems (ICACCS). Coimbatore: Indian Institute of Industrial Engineering (IEEE), 2022
    [6]
    SUN Jianwei, ZHANG Zhongwei, ZHENG Tie, et al. Design of lossless compression system for CCSDS on-board data based on FPGA[J]. Chinese Journal of Space Science, 2019, 39(5): 694-700 (孙建伟, 张忠伟, 郑铁, 等. 基于FPGA的CCSDS星载数据无损压缩系统设计[J]. 空间科学学报, 2019, 39(5): 694-700 doi: 10.11728/cjss2019.05.694

    SUN Jianwei, ZHANG Zhongwei, ZHENG Tie, et al. Design of lossless compression system for CCSDS on-board data based on FPGA[J]. Chinese Journal of Space Science, 2019, 39(5): 694-700 doi: 10.11728/cjss2019.05.694
    [7]
    ZHOU Wenjing, ZHANG Xuequan, AN Junshe, et al. Optimal Optimized implementation of bit plane encoder for CCSDS-IDC[J]. Microelectronics :Times New Roman;">& Computer, 2017, 34(9): 32-37 (周文敬, 张学全, 安军社, 等. CCSDS-IDC位平面编码的优化实现[J]. 微电子学与计算机, 2017, 34(9): 32-37 doi: 10.19304/j.cnki.issn1000-7180.2017.09.007

    ZHOU Wenjing, ZHANG Xuequan, AN Junshe, et al. Optimal Optimized implementation of bit plane encoder for CCSDS-IDC[J]. Microelectronics & Computer, 2017, 34(9): 32-37 doi: 10.19304/j.cnki.issn1000-7180.2017.09.007
    [8]
    HU Yonggang. Research on Bit-Plane Encoding of CCSDS Image Compression and Implementation on FPGA[D]. Xi’an: Xidian University, 2011 (胡永刚. CCSDS图像压缩算法位平面编码技术研究及其FPGA实现[D]. 西安: 西安电子科技大学, 2011

    HU Yonggang. Research on Bit-Plane Encoding of CCSDS Image Compression and Implementation on FPGA[D]. Xi’an: Xidian University, 2011
    [9]
    SUN Nan. Design and Realization of Airborne Large Size Image Compression System[D]. Taiyuan: North University of China, 2024 (孙楠. 机载大尺寸图像压缩系统的设计与实现[D]. 太原: 中北大学, 2024

    SUN Nan. Design and Realization of Airborne Large Size Image Compression System[D]. Taiyuan: North University of China, 2024
    [10]
    MACHAIRAS E, KRANITIS N. A 13.3 Gbps 9/7M discrete wavelet transform for CCSDS 122.0-B-1 image data compression on a space-grade SRAM FPGA[J]. Electronics, 2020, 9(8): 1234 doi: 10.3390/electronics9081234
    [11]
    DONG Mingyan, LEI Jie, WANG Keyan, et al. Highly efficient VLSI architecture for DWT with low-storage implementation[J]. Journal of Xidian University, 2016, 43(2): 35-40 (董明岩, 雷杰, 王柯俨, 等. 高效低存储DWT的VLSI结构设计[J]. 西安电子科技大学学报(自然科学版), 2016, 43(2): 35-40 doi: 10.3969/j.issn.1001-2400.2016.02.007

    DONG Mingyan, LEI Jie, WANG Keyan, et al. Highly efficient VLSI architecture for DWT with low-storage implementation[J]. Journal of Xidian University, 2016, 43(2): 35-40 doi: 10.3969/j.issn.1001-2400.2016.02.007
    [12]
    JIANG Z C, PAN W D, SHEN H D. Universal Golomb–Rice coding parameter estimation using deep belief networks for hyperspectral image compression[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(10): 3830-3840 doi: 10.1109/JSTARS.2018.2864921
    [13]
    SAID A, PEARLMAN W A. A new, fast, and efficient image codec based on set partitioning in hierarchical trees[J]. IEEE Transactions on Circuits and Systems for Video Technology, 1996, 6(3): 243-250 doi: 10.1109/76.499834
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)  / Tables(2)

    Article Metrics

    Article Views(255) PDF Downloads(9) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return