Turn off MathJax
Article Contents
LIU Xiaodi, ZHONG Dingkun, XIANG Changqing. Preliminary Analysis of Solar Interplanetary Propagation of Space Weather Events in May 2024 (in Chinese). Chinese Journal of Space Science, 2026, 46(1): 1-15 doi: 10.11728/cjss2026.01.2025-0024
Citation: LIU Xiaodi, ZHONG Dingkun, XIANG Changqing. Preliminary Analysis of Solar Interplanetary Propagation of Space Weather Events in May 2024 (in Chinese). Chinese Journal of Space Science, 2026, 46(1): 1-15 doi: 10.11728/cjss2026.01.2025-0024

Preliminary Analysis of Solar Interplanetary Propagation of Space Weather Events in May 2024

doi: 10.11728/cjss2026.01.2025-0024 cstr: 32142.14.cjss.2025-0024
  • Received Date: 2025-02-18
  • Rev Recd Date: 2025-04-08
  • Available Online: 2025-05-26
  • A variety of observations are employed to conduct a preliminary analysis of the propagation in solar-interplanetary space of seven earth-directed full-halo Coronal Mass Ejections (CME) originating from the solar Active Region (AR) 13664 from 8 to 11 May 2024. These seven CME can be divided into two groups. The first group consists of four CME that occurred during the period from 05:36 UT on 8 May to 09:24 UT on 9 May, and the second group consists of three CME that occurred during the period from 18:52 UT on 9 May to 01:36 UT on 11 May. We utilize the heliospheric imager on the Solar Terrestrial Relations Observatory A (STEREO A/HI) to observe and track the time-elongation relationships of the high density regions corresponding to these two groups of CME, and apply the fixed Φ-angle fitting method and the harmonic mean fitting method to calculate the most probable propagation directions and average radial velocities of these two groups of CME. The results show that the high-density regions associated with these two groups of CME are respectively overlapped in the field of view of STEREO A/HI. The minimum differences between the two group CME' arrival times near the Earth's orbit calculated from the fitting radial velocities and the actual start times observed in situ by the WIND spacecraft are 0.5 hours and 3 hours respectively. These results indicate that during the solar-terrestrial propagation of these two groups of CME, the fast CME behind catch up with the slower CME ahead, thus, the two groups of CME form two complex ejecta and generate the extremely intense geomagnetic storm.

     

  • loading
  • [1]
    SCHWENN R, DAL LAGO A, HUTTUNEN E, et al. The association of coronal mass ejections with their effects near the Earth[J]. Annales Geophysicae, 2005, 23(3): 1033-1059 doi: 10.5194/angeo-23-1033-2005
    [2]
    FENG Xueshang, XIANG Changqing, ZHONG Dingkun. Numerical study of interplanetary solar storms[J]. Scientia Sinica Terrae, 2013, 43(6): 912-933 (冯学尚, 向长青, 钟鼎坤. 行星际太阳风暴的数值模拟研究[J]. 中国科学: 地球科学, 2013, 43(6): 912-933

    FENG Xueshang, XIANG Changqing, ZHONG Dingkun. Numerical study of interplanetary solar storms[J]. Scientia Sinica Terrae, 2013, 43(6): 912-933
    [3]
    GOPALSWAMY N, YASHIRO S, MICHALEK G, et al. Solar source of the largest geomagnetic storm of cycle 23[J]. Geophysical Research Letters, 2005, 32(12): L12S09 doi: 10.1029/2004gl021639
    [4]
    BOTELER D H. A 21st century view of the March 1989 magnetic storm[J]. Space Weather, 2019, 17(10): 1427-1441 doi: 10.1029/2019SW002278
    [5]
    DOMINGO V, FLECK B, POLAND A I. The SOHO mission: an overview[J]. Solar Physics, 1995, 162(1/2): 1-37 doi: 10.1007/978-94-009-0191-9_1
    [6]
    BRUECKNER G E, HOWARD R A, KOOMEN M J, et al. The large angle spectroscopic coronagraph (LASCO)[J]. Solar Physics, 1995, 162(1/2): 357-402
    [7]
    KAISER M L, KUCERA T A, DAVILA J M, et al. The STEREO mission: an introduction[J]. Space Science Reviews, 2008, 136(1/2/3/4): 5-16 doi: 10.1007/978-0-387-09649-0_2
    [8]
    HOWARD R A, MOSES J D, VOURLIDAS A, et al. Sun Earth connection coronal and heliospheric investigation (SECCHI)[J]. Space Science Reviews, 2008, 136(1/2/3/4): 67-115 doi: 10.1016/s0273-1177(02)00147-3
    [9]
    LUHMANN J G, CURTIS D W, SCHROEDER P, et al. STEREO IMPACT investigation goals, measurements, and data products overview[J]. Space Science Reviews, 2008, 136(1/2/3/4): 117-184
    [10]
    LEPPING R P, ACŨNA M H, BURLAGA L F, et al. The WIND magnetic field investigation[J]. Space Science Reviews, 1995, 71(1/2/3/4): 207-229
    [11]
    OGILVIE K W, CHORNAY D J, FRITZENREITER R J, et al. SWE, a comprehensive plasma instrument for the WIND spacecraft[J]. Space Science Reviews, 1995, 71(1/2/3/4): 55-77 doi: 10.1007/bf00751326
    [12]
    BENZ A O, MONSTEIN C, MEYER H, et al. A world-wide net of solar radio spectrometers: e-CALLISTO[J]. Earth, Moon, and Planet, 2009, 104(1/2/3/4): 277-285 doi: 10.1007/s11038-008-9267-6
    [13]
    WANG Jingjing, LUO Bingxian, LIU Siqing, et al. Analysis of CME events in 2010 combined with in-situ and STEREO/HI observations[J]. Chinese Journal of Geophysics, 2013, 56(3): 746-757 (王晶晶, 罗冰显, 刘四清, 等. 结合实地观测和STEREO/HI图像观测分析2010年CME事件[J]. 地球物理学报, 2013, 56(3): 746-757

    WANG Jingjing, LUO Bingxian, LIU Siqing, et al. Analysis of CME events in 2010 combined with in-situ and STEREO/HI observations[J]. Chinese Journal of Geophysics, 2013, 56(3): 746-757
    [14]
    HU H D, LIU Y D, WANG R, et al. Multi-spacecraft observations of the coronal and interplanetary evolution of a solar eruption associated with two active regions[J]. The Astrophysical Journal, 2017, 840(2): 76 doi: 10.3847/1538-4357/aa6d54
    [15]
    LIU Y D, HU H D, ZHAO X W, et al. A pileup of coronal mass ejections produced the largest geomagnetic storm in two decades[J]. The Astrophysical Journal Letters, 2024, 974(1): L8 doi: 10.3847/2041-8213/ad7ba4
    [16]
    LUGAZ N. Accuracy and limitations of Fitting and Stereoscopic Methods to determine the direction of coronal mass ejections from Heliospheric Imagers observations[J]. Solar Physics, 2010, 267(2): 411-429 doi: 10.1007/s11207-010-9654-9
    [17]
    LIU Y, THERNISIEN A, LUHMANN J G, et al. Reconstructing coronal mass ejections with Coordinated Imaging and in situ observations: global structure, kinematics, and implications for space weather forecasting[J]. The Astrophysical Journal, 2010, 722(2): 1762-1777 doi: 10.1088/0004-637X/722/2/1762
    [18]
    ZHANG J, DERE K P, HOWARD R A, et al. On the temporal relationship between coronal mass ejections and flares[J]. The Astrophysical Journal, 2001, 559(1): 452-462 doi: 10.1086/322405
    [19]
    ZHOU G P, WANG J X, CAO Z L. Correlation between halo coronal mass ejections and solar surface activity[J]. Astronomy :Times New Roman;">& Astrophysics, 2003, 397(3): 1057-1067 doi: 10.1051/0004-6361:20021463
    [20]
    YASHIRO S, MICHALEK G, AKIYAMA S, et al. Spatial relationship between solar flares and coronal mass ejections[J]. The Astrophysical Journal, 2008, 673(2): 1174-1180 doi: 10.1086/524927
    [21]
    李冉. 基于稻城圆环阵太阳射电成像望远镜观测预报行星际激波到达时间[D]. 北京: 中国科学院大学(中国科学院国家空间科学中心), 2024
    [22]
    NEWKIRK JR G. The solar corona in active regions and the thermal origin of the slowly varying component of solar radio radiation[J]. The Astrophysical Journal, 1961, 133: 983 doi: 10.1016/0038-092x(64)90060-x
    [23]
    THOMPSON W T. Coordinate systems for solar image data[J]. Astronomy :Times New Roman;">& Astrophysics, 2006, 449(2): 791-803 doi: 10.1051/0004-6361:20054262
    [24]
    SHEELEY JR N R, WALTERS J H, WANG Y M, et al. Continuous tracking of coronal outflows: two kinds of coronal mass ejections[J]. Journal of Geophysical Research: Space Physics, 1999, 104(A11): 24739-24767 doi: 10.1029/1999JA900308
    [25]
    LIU Y, DAVIES J A, LUHMANN J G, et al. Geometric triangulation of imaging observations to track coronal mass ejections continuously out to 1 AU[J]. The Astrophysical Journal Letters, 2010, 710(1): L82-L87 doi: 10.1088/2041-8205/710/1/L82
    [26]
    SHEELEY JR N R, HERBST A D, PALATCHI C A, et al. Heliospheric images of the solar wind at Earth[J]. The Astrophysical Journal, 2008, 675(1): 853-862 doi: 10.1086/526422
    [27]
    DAVIES J A, HARRISON R A, ROUILLARD A P, et al. A synoptic view of solar transient evolution in the inner heliosphere using the Heliospheric Imagers on STEREO[J]. Geophysical Research Letters, 2009, 36(2): L02102 doi: 10.1029/2008gl036182
    [28]
    WANG R, LIU Y D, ZHAO X W, et al. Unveiling key factors in solar eruptions leading to the solar superstorm in 2024 May[J]. Astronomy :Times New Roman;">& Astrophysics, 2024, 692: A112 doi: 10.1051/0004-6361/202452008
    [29]
    World Data Center for Geomagnetism, NOSE K M, IYEMORI T, et al. Geomagnetic Dst index[EB/OL]. (2015-12-30)[2024-09-14]. https://doi.org/10.17593/14515-74000
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(2)

    Article Metrics

    Article Views(245) PDF Downloads(17) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return