| Citation: | ZHANG Tengfei, XU Lin, YANG Wei, WANG Yanhai, HAN Juanjuan, LIN Yangting, LI Xianhua. Bibliometrics-based Evaluation of International Scientific Research Impact of China’s Lunar Exploration Program (in Chinese). Chinese Journal of Space Science, 2026, 46(1): 1-21 doi: 10.11728/cjss2026.01.2025-0029 |
| [1] |
CARLSON R W. Robotic sample return reveals lunar secrets[J]. Nature, 2021, 600(7887): 39-40 doi: 10.1038/d41586-021-03547-7
|
| [2] |
MALLAPATY S. China’s first Moon rocks ignite research bonanza[J]. Nature, 2022, 603(7902): 561-562 doi: 10.1038/d41586-022-00683-6
|
| [3] |
LE H J, RONG Z J, WEI Y. Exploring the universe and protecting the Earth: young Chinese scientists in action[J]. The Innovation, 2023, 4(4): 100466 doi: 10.1016/j.xinn.2023.100466
|
| [4] |
LIN Yangting. Key issues of the formation and evolution of the Moon[J]. Geochimica, 2010, 39(1): 1-10 (林杨挺. 月球形成和演化的关键科学问题[J]. 地球化学, 2010, 39(1): 1-10
LIN Yangting. Key issues of the formation and evolution of the Moon[J]. Geochimica, 2010, 39(1): 1-10
|
| [5] |
LIU Jianzhong, OUYANG Ziyuan, LI Chunlai, et al. China national moon exploration progress (2001-2010)[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2013, 32(5): 544-551 (刘建忠, 欧阳自远, 李春来, 等. 中国月球探测进展(2001-2010年)[J]. 矿物岩石地球化学通报, 2013, 32(5): 544-551
LIU Jianzhong, OUYANG Ziyuan, LI Chunlai, et al. China national moon exploration progress (2001-2010)[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2013, 32(5): 544-551
|
| [6] |
LI C L, WANG C, WEI Y, et al. China’s present and future lunar exploration program[J]. Science, 2019, 365(6450): 238-239 doi: 10.1126/science.aax9908
|
| [7] |
LI Chunlai, LIU Jianjun, ZUO Wei, et al. Progress of China’s lunar exploration (2011-2020)[J]. Chinese Journal of Space Science, 2021, 41(1): 68-75 (李春来, 刘建军, 左维, 等. 中国月球探测进展(2011-2020年)[J]. 空间科学学报, 2021, 41(1): 68-75
LI Chunlai, LIU Jianjun, ZUO Wei, et al. Progress of China’s lunar exploration (2011-2020)[J]. Chinese Journal of Space Science, 2021, 41(1): 68-75
|
| [8] |
YANG W, LIN Y T. New lunar samples returned by Chang’E-5: opportunities for new discoveries and international collaboration[J]. The Innovation, 2021, 2(1): 100070 doi: 10.1016/j.xinn.2020.100070
|
| [9] |
CHEN Y, HU S, LI J H, et al. Chang’E-5 lunar samples shed new light on the Moon[J]. The Innovation Geoscience, 2023, 1(1): 100014
|
| [10] |
WU F Y, LI Q L, CHEN Y, et al. Lunar evolution in light of the chang’E-5 returned samples[J]. Annual Review of Earth and Planetary Sciences, 2024, 52: 159-194 doi: 10.1146/annurev-earth-040722-100453
|
| [11] |
DING Jielan, GUO Yue, LONG Yixuan, et al. Research trends of resource and environment management: a bibliometric analysis based on WoS publications[J]. Science Focus, 2021, 16(2): 1-24 (丁洁兰, 郭跃, 龙艺璇, 等. 资源与环境管理领域发展态势研究—基于WoS论文的文献计量分析[J]. 科学观察, 2021, 16(2): 1-24
DING Jielan, GUO Yue, LONG Yixuan, et al. Research trends of resource and environment management: a bibliometric analysis based on WoS publications[J]. Science Focus, 2021, 16(2): 1-24
|
| [12] |
REN Shengli, HU Sufang, LIU Yahui, et al. Output and impact of geochemical articles authored by Chinese researchers from 2000 to 2021: statistical analysis based on SCI database[J]. Acta Petrologica Sinica, 2023, 39(1): 249-262 (任胜利, 胡素芳, 刘亚辉, 等. 2000~2021年我国地球化学研究论文的产出与影响: 基于SCI数据库的统计分析[J]. 岩石学报, 2023, 39(1): 249-262
REN Shengli, HU Sufang, LIU Yahui, et al. Output and impact of geochemical articles authored by Chinese researchers from 2000 to 2021: statistical analysis based on SCI database[J]. Acta Petrologica Sinica, 2023, 39(1): 249-262
|
| [13] |
ZHANG Tengfei, WANG Yanhai, YANG Wei, et al. Frontiers in lunar science based on bibliometric analysis[J]. Acta Petrologica Sinica, 2023, 39(10): 3169-3183 (张腾飞, 王燕海, 杨蔚, 等. 基于文献计量的月球科学前沿研判[J]. 岩石学报, 2023, 39(10): 3169-3183
ZHANG Tengfei, WANG Yanhai, YANG Wei, et al. Frontiers in lunar science based on bibliometric analysis[J]. Acta Petrologica Sinica, 2023, 39(10): 3169-3183
|
| [14] |
QIU Junping. Bibliometrics[M]. 2nd ed. Beijing: China Science Publishing & Media Ltd, 2019 (邱均平. 文献计量学[M]. 2版. 北京: 科学出版社, 2019
QIU Junping. Bibliometrics[M]. 2nd ed. Beijing: China Science Publishing & Media Ltd, 2019
|
| [15] |
GAO Junkuan. Application of bibliometrics methods in scientific evaluation[J]. Documentation, Information :Times New Roman;">& Knowledge, 2005(2): 14-17 (高俊宽. 文献计量学方法在科学评价中的应用探讨[J]. 图书情报知识, 2005(2): 14-17
GAO Junkuan. Application of bibliometrics methods in scientific evaluation[J]. Documentation, Information & Knowledge, 2005(2): 14-17
|
| [16] |
ZHANG Juan. The analysis of literature output and citation impact of Guangdong province natural science foundation[J]. Science and Technology Management Research, 2018, 38(6): 251-257 (张娟. 广东省自然科学基金项目的论文产出与影响力分析[J]. 科技管理研究, 2018, 38(6): 251-257
ZHANG Juan. The analysis of literature output and citation impact of Guangdong province natural science foundation[J]. Science and Technology Management Research, 2018, 38(6): 251-257
|
| [17] |
SUN Jianhong, YUE Shuangshuang, XU Jianzhong. Research and application progress of inorganic flame retardants in China and abroad[J]. Inorganic Chemicals Industry, 2019, 51(2): 1-7 (孙建红, 岳双双, 徐建中. 国内外无机阻燃剂的研究与应用进展[J]. 无机盐工业, 2019, 51(2): 1-7
SUN Jianhong, YUE Shuangshuang, XU Jianzhong. Research and application progress of inorganic flame retardants in China and abroad[J]. Inorganic Chemicals Industry, 2019, 51(2): 1-7
|
| [18] |
ZOU Y L, ZHANG L Y, LIU J Z, et al. Data analysis of Chang’E-1 gamma-ray spectrometer and global distribution of U, K, and Th elemental abundances[J]. Acta Geologica Sinica (English Edition), 2011, 85(6): 1299-1309 doi: 10.1111/j.1755-6724.2011.00589.x
|
| [19] |
WU Y Z. Major elements and Mg# of the moon: results from Chang’E-1 interference imaging spectrometer (IIM) data[J]. Geochimica et Cosmochimica Acta, 2012, 93: 214-234 doi: 10.1016/j.gca.2012.07.011
|
| [20] |
JIANG Jingshan, WANG Zhenzhan, LI Yun. Study on theory and application of CE-1 microwave sounding lunar surface[J]. Strategic Study of CAE, 2008, 10(6): 16-22 (姜景山, 王振占, 李芸. 嫦娥1号卫星微波探月技术机理和应用研究[J]. 中国工程科学, 2008, 10(6): 16-22
JIANG Jingshan, WANG Zhenzhan, LI Yun. Study on theory and application of CE-1 microwave sounding lunar surface[J]. Strategic Study of CAE, 2008, 10(6): 16-22
|
| [21] |
Editorial Committee of the Chang’E-2 High-Resolution Lunar Imagery Atlas. Chang’E 2 High-Resolution Lunar Image Gallery[M]. Beijing: SinoMap Press, 2012 (《嫦娥二号高分辨率月球影像图集》编辑委员会. 嫦娥二号高分辨率月球影像图集[M]. 北京: 中国地图出版社, 2012
Editorial Committee of the Chang’E-2 High-Resolution Lunar Imagery Atlas. Chang’E 2 High-Resolution Lunar Image Gallery[M]. Beijing: SinoMap Press, 2012
|
| [22] |
ZHU M H, CHANG J, XIE M G, et al. The uniform K distribution of the mare deposits in the Orientale Basin: insights from Chang’E-2 gamma-ray spectrometer[J]. Earth and Planetary Science Letters, 2015, 418: 172-180 doi: 10.1016/j.jpgl.2014.11.009
|
| [23] |
WANG X Q, CUI J, WANG X D, et al. The Solar Wind interactions with Lunar Magnetic Anomalies: a case study of the Chang’E-2 plasma data near the Serenitatis antipode[J]. Advances in Space Research, 2012, 50(12): 1600-1606 doi: 10.1016/j.asr.2011.12.003
|
| [24] |
ZHU M H, FA W Z, IP W H, et al. Morphology of asteroid (4179) Toutatis as imaged by Chang'E-2 spacecraft[J]. Geophysical Research Letters, 2014, 41(2): 328-333 doi: 10.1002/2013GL058914
|
| [25] |
SIEGLER M A, FENG J Q, LEHMAN-FRANCO K, et al. Remote detection of a lunar granitic batholith at Compton-Belkovich[J]. Nature, 2023, 620(7972): 116-121 doi: 10.1038/s41586-023-06183-5
|
| [26] |
XIAO L, ZHU P M, FANG G Y, et al. A young multilayered terrane of the northern Mare Imbrium revealed by Chang’E-3 mission[J]. Science, 2015, 347(6227): 1226-1229 doi: 10.1126/science.1259866
|
| [27] |
ZHANG J H, YANG W, HU S, et al. Volcanic history of the Imbrium basin: a close-up view from the lunar rover Yutu[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(17): 5342-5347 doi: 10.1073/pnas.1503082112
|
| [28] |
LING Z C, JOLLIFF B L, WANG A L, et al. Correlated compositional and mineralogical investigations at the Chang’E-3 landing site[J]. Nature Communications, 2015, 6: 8880 doi: 10.1038/ncomms9880
|
| [29] |
LI C L, LIU D W, LIU B, et al. Chang’E-4 initial spectroscopic identification of lunar far-side mantle-derived materials[J]. Nature, 2019, 569(7756): 378-382 doi: 10.1038/s41586-019-1189-0
|
| [30] |
GOU S, YUE Z Y, DI K C, et al. In situ spectral measurements of space weathering by Chang'E-4 rover[J]. Earth and Planetary Science Letters, 2020, 535: 116117 doi: 10.1016/j.jpgl.2020.116117
|
| [31] |
LIN H L, HE Z P, YANG W, et al. Olivine-norite rock detected by the lunar rover Yutu-2 likely crystallized from the SPA-impact melt pool[J]. National Science Review, 2020, 7(5): 913-920 doi: 10.1093/nsr/nwz183
|
| [32] |
LI C L, SU Y, PETTINELLI E, et al. The Moon’s farside shallow subsurface structure unveiled by Chang’E-4 Lunar Penetrating Radar[J]. Science Advances, 2020, 6(9): eaay6898 doi: 10.1126/sciadv.aay6898
|
| [33] |
LAI J L, XU Y, BUGIOLACCHI R, et al. First look by the Yutu-2 rover at the deep subsurface structure at the lunar farside[J]. Nature Communications, 2020, 11(1): 3426 doi: 10.1038/s41467-020-17262-w
|
| [34] |
ZHANG J H, ZHOU B, LIN Y T, et al. Lunar regolith and substructure at Chang’E-4 landing site in South Pole-Aitken basin[J]. Nature Astronomy, 2021, 5(1): 25-30 doi: 10.1038/s41550-020-1197-x
|
| [35] |
XIAO X, YU S R, HUANG J, et al. Thermophysical properties of the regolith on the lunar far side revealed by the in situ temperature probing of the Chang’E-4 mission[J]. National Science Review, 2022, 9(11): nwac175 doi: 10.1093/nsr/nwac175
|
| [36] |
CHE X C, NEMCHIN A, LIU D Y, et al. Age and composition of young basalts on the Moon, measured from samples returned by Chang’E-5[J]. Science, 2021, 374(6569): 887-890 doi: 10.1126/science.abl7957
|
| [37] |
LI Q L, ZHOU Q, LIU Y, et al. Two-billion-year-old volcanism on the Moon from Chang’ E-5 basalts[J]. Nature, 2021, 600(7887): 54-58 doi: 10.1038/s41586-021-04100-2
|
| [38] |
TIAN H C, ZHANG C, YANG W, et al. Surges in volcanic activity on the Moon about two billion years ago[J]. Nature Communications, 2023, 14(1): 3734 doi: 10.1038/s41467-023-39418-0
|
| [39] |
TIAN H C, WANG H, CHEN Y, et al. Non-KREEP origin for Chang’ E -5 basalts in the procellarum KREEP terrane[J]. Nature, 2021, 600(7887): 59-63 doi: 10.1038/s41586-021-04119-5
|
| [40] |
HU S, HE H C, JI J L, et al. A dry lunar mantle reservoir for young mare basalts of Chang’ E -5[J]. Nature, 2021, 600(7887): 49-53 doi: 10.1038/s41586-021-04107-9
|
| [41] |
CAI S H, QIN H F, WANG H P, et al. Persistent but weak magnetic field at the Moon’s midstage revealed by Chang’ E-5 basalt[J]. Science Advances, 2025, 11(1): eadp3333 doi: 10.1126/sciadv.adp3333
|
| [42] |
WANG B W, ZHANG Q W L, CHEN Y, et al. Returned samples indicate volcanism on the Moon 120 million years ago[J]. Science, 2024, 385(6713): 1077-1080 doi: 10.1126/science.adk6635
|
| [43] |
ZENG X J, LI X Y, LIU J Z. Exotic clasts in Chang’ E-5 regolith indicative of unexplored terrane on the Moon[J]. Nature Astronomy, 2023, 7(2): 152-159 doi: 10.1038/s41550-022-01840-7
|
| [44] |
YANG W, CHEN Y, WANG H, et al. Geochemistry of impact glasses in the Chang’ E-5 regolith: constraints on impact melting and the petrogenesis of local basalt[J]. Geochimica et Cosmochimica Acta, 2022, 335: 183-196 doi: 10.1016/j.gca.2022.08.030
|
| [45] |
LONG T, QIAN Y Q, NORMAN M D, et al. Constraining the formation and transport of lunar impact glasses using the ages and chemical compositions of Chang’ E-5 glass beads[J]. Science Advances, 2022, 8(39): eabq2542 doi: 10.1126/sciadv.abq2542
|
| [46] |
ZHOU C J, TANG H, LI X Y, et al. Chang’E-5 samples reveal high water content in lunar minerals[J]. Nature Communications, 2022, 13(1): 5336 doi: 10.1038/s41467-022-33095-1
|
| [47] |
XU Y C, TIAN H C, ZHANG C, et al. High abundance of solar wind-derived water in lunar soils from the middle latitude[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(51): e2214395119 doi: 10.1073/pnas.2214395119
|
| [48] |
HE H C, JI J L, ZHANG Y, et al. A solar wind-derived water reservoir on the Moon hosted by impact glass beads[J]. Nature Geoscience, 2023, 16(4): 294-300 doi: 10.1038/s41561-023-01159-6
|
| [49] |
ZHOU C J, MO B, TANG H, et al. Multiple sources of water preserved in impact glasses from Chang’ E-5 lunar soil[J]. Science Advances, 2024, 10(19): eadl2413 doi: 10.1126/sciadv.adl2413
|
| [50] |
LI C, GUO Z, LI Y, et al. Impact-driven disproportionation origin of nanophase iron particles in Chang’ E-5 lunar soil sample[J]. Nature Astronomy, 2022, 6(10): 1156-1162 doi: 10.1038/s41550-022-01763-3
|
| [51] |
GUO Z, LI C, LI Y, et al. Sub-microscopic magnetite and metallic iron particles formed by eutectic reaction in Chang’E-5 lunar soil[J]. Nature Communications, 2022, 13(1): 7177 doi: 10.1038/s41467-022-35009-7
|
| [52] |
XIAN H Y, ZHU J X, YANG Y P, et al. Ubiquitous and progressively increasing ferric iron content on the lunar surfaces revealed by the Chang’E-5 sample[J]. Nature Astronomy, 2023, 7(3): 280-286 doi: 10.1038/s41550-022-01855-0
|
| [53] |
LI J H, YANG W, LI X Y, et al. The Chang’ E-5 lunar samples stimulate the development of microanalysis techniques[J]. Atomic Spectroscopy, 2022, 43(1): 1-5 doi: 10.46770/as.2022.010
|
| [54] |
YANG W, LI J H, LI X Y, et al. Microanalysis techniques guarantee long-term research on Chang’ E-5 lunar samples[J]. Atomic Spectroscopy, 2022, 43(4): 266-271 doi: 10.46770/AS.2022.025
|
| [55] |
ZENG X G, LIU D W, CHEN Y, et al. Landing site of the Chang’ E-6 lunar farside sample return mission from the Apollo basin[J]. Nature Astronomy, 2023, 7(10): 1188-1197 doi: 10.1038/s41550-023-02038-1
|
| [56] |
QIAN Y Q, HEAD J, MICHALSKI J, et al. Long-lasting farside volcanism in the Apollo basin: Chang’ E-6 landing site[J]. Earth and Planetary Science Letters, 2024, 637: 118737 doi: 10.1016/j.jpgl.2024.118737
|
| [57] |
YANG W, HE Y Y, QIAN Y Q, et al. Scientists eager for Chang’ E-6 lunar farside samples to bring new discoveries[J]. The Innovation, 2024, 5(5): 100660 doi: 10.1016/j.xinn.2024.100660
|
| [58] |
YUE Z Y, GOU S, SUN S J, et al. Geological context of the Chang’ E-6 landing area and implications for sample analysis[J]. The Innovation, 2024, 5(5): 100663 doi: 10.1016/j.xinn.2024.100663
|
| [59] |
GUO D J, BAO Y M, LIU Y, et al. Geological investigation of the lunar Apollo basin: from surface composition to interior structure[J]. Earth and Planetary Science Letters, 2024, 646: 118986 doi: 10.1016/j.jpgl.2024.118986
|
| [60] |
JIA Z Y, CHEN J, KONG J Q, et al. Geologic context of Chang’ E-6 candidate landing regions and potential non-mare materials in the returned samples[J]. Icarus, 2024, 416: 116107 doi: 10.1016/j.icarus.2024.116107
|
| [61] |
LI C L, HU H, YANG M F, et al. Nature of the lunar far-side samples returned by the Chang’E-6 mission[J]. National Science Review, 2024, 11(11): nwae328 doi: 10.1093/nsr/nwae328
|
| [62] |
ZHANG Q W L, YANG M H, LI Q L, et al. Lunar farside volcanism 2.8 billion years ago from Chang’e-6 basalts[J]. Nature, 2025, 643(8071): 356-360 doi: 10.1038/s41586-024-08382-0
|
| [63] |
CUI Z X, YANG Q, ZHANG Y Q, et al. A sample of the Moon’s far side retrieved by Chang’e-6 contains 2.83-billion-year-old basalt[J]. Science, 2024, 386(6728): 1395-1399 doi: 10.1126/science.adt1093
|
| [64] |
HE H C, LI L X, HU S, et al. Water abundance in the lunar farside mantle[J]. Nature, 2025, 643(8071): 366-370 doi: 10.1038/s41586-025-08870-x
|
| [65] |
ZHOU Q, YANG W, CHU Z Y, et al. Ultra-depleted mantle source of basalts from the South Pole-Aitken basin[J]. Nature, 2025, 643(8071): 371-375 doi: 10.1038/s41586-025-09131-7
|
| [66] |
CAI S H, QI K X, YANG S H, et al. A reinforced lunar dynamo recorded by Chang’e-6 farside basalt[J]. Nature, 2025, 643(8071): 361-365 doi: 10.1038/s41586-024-08526-2
|
| [67] |
WANG C, JIA Y Z, XUE C B, et al. Scientific objectives and payload configuration of the Chang’E-7 mission[J]. National Science Review, 2024, 11(2): nwad329 doi: 10.1093/nsr/nwad329
|