Turn off MathJax
Article Contents
ZHANG Tengfei, XU Lin, YANG Wei, WANG Yanhai, HAN Juanjuan, LIN Yangting, LI Xianhua. Bibliometrics-based Evaluation of International Scientific Research Impact of China’s Lunar Exploration Program (in Chinese). Chinese Journal of Space Science, 2026, 46(1): 1-21 doi: 10.11728/cjss2026.01.2025-0029
Citation: ZHANG Tengfei, XU Lin, YANG Wei, WANG Yanhai, HAN Juanjuan, LIN Yangting, LI Xianhua. Bibliometrics-based Evaluation of International Scientific Research Impact of China’s Lunar Exploration Program (in Chinese). Chinese Journal of Space Science, 2026, 46(1): 1-21 doi: 10.11728/cjss2026.01.2025-0029

Bibliometrics-based Evaluation of International Scientific Research Impact of China’s Lunar Exploration Program

doi: 10.11728/cjss2026.01.2025-0029 cstr: 32142.14.cjss.2025-0029
  • Received Date: 2025-02-26
  • Rev Recd Date: 2025-07-31
  • Available Online: 2025-08-01
  • As human exploration of the Moon continues to advance, the Chinese Lunar Exploration Program (later referred to as the Chang’E Project) has emerged as a key component of China’s deep space exploration strategy, garnering widespread attention within the international academic community and driving the development of China’s lunar science research community. Since the launch of the Chang’E Project in 2004, related research has yielded a series of remarkable achievements. These findings have provided new evidence for understanding the formation and evolutionary history of the moon, while also laying the groundwork and accumulating experience for future deep space exploration activities. Based on the Web of Science Core Collection Database, this study uses bibliometric methods to systematically analyze the scientific output of the Chinese Lunar Exploration Program (2003-2024). By quantitatively evaluating the spatial and temporal distribution characteristics, international cooperation dynamics, and academic influence of 1023 SCI papers, the study reveals the contribution of Chinese Lunar Exploration Program to the global lunar scientific research. The study shows that: the implementation of Chinese Lunar Exploration Program has increased China’s share of publications in the field of lunar science to 32.6% (2024), and the CNCI value of the project’s output papers (1.03) exceeds the global average; scientific breakthroughs are concentrated in the Chang’E-4 (lunar backside landing and roving exploration) and Chang’E-5 (lunar sample analysis) missions, and the project outputs 181 high-impact papers; the proportion of international citations from non-Chinese institutions has increased significantly, indicating that the engineering results have gained wide international recognition. This study provides quantitative evidence for evaluating the scientific benefits of China’s deep space exploration program, and will also serve as an important reference for China’s future deep space exploration strategic planning and planetary science development.

     

  • loading
  • [1]
    CARLSON R W. Robotic sample return reveals lunar secrets[J]. Nature, 2021, 600(7887): 39-40 doi: 10.1038/d41586-021-03547-7
    [2]
    MALLAPATY S. China’s first Moon rocks ignite research bonanza[J]. Nature, 2022, 603(7902): 561-562 doi: 10.1038/d41586-022-00683-6
    [3]
    LE H J, RONG Z J, WEI Y. Exploring the universe and protecting the Earth: young Chinese scientists in action[J]. The Innovation, 2023, 4(4): 100466 doi: 10.1016/j.xinn.2023.100466
    [4]
    LIN Yangting. Key issues of the formation and evolution of the Moon[J]. Geochimica, 2010, 39(1): 1-10 (林杨挺. 月球形成和演化的关键科学问题[J]. 地球化学, 2010, 39(1): 1-10

    LIN Yangting. Key issues of the formation and evolution of the Moon[J]. Geochimica, 2010, 39(1): 1-10
    [5]
    LIU Jianzhong, OUYANG Ziyuan, LI Chunlai, et al. China national moon exploration progress (2001-2010)[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2013, 32(5): 544-551 (刘建忠, 欧阳自远, 李春来, 等. 中国月球探测进展(2001-2010年)[J]. 矿物岩石地球化学通报, 2013, 32(5): 544-551

    LIU Jianzhong, OUYANG Ziyuan, LI Chunlai, et al. China national moon exploration progress (2001-2010)[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2013, 32(5): 544-551
    [6]
    LI C L, WANG C, WEI Y, et al. China’s present and future lunar exploration program[J]. Science, 2019, 365(6450): 238-239 doi: 10.1126/science.aax9908
    [7]
    LI Chunlai, LIU Jianjun, ZUO Wei, et al. Progress of China’s lunar exploration (2011-2020)[J]. Chinese Journal of Space Science, 2021, 41(1): 68-75 (李春来, 刘建军, 左维, 等. 中国月球探测进展(2011-2020年)[J]. 空间科学学报, 2021, 41(1): 68-75

    LI Chunlai, LIU Jianjun, ZUO Wei, et al. Progress of China’s lunar exploration (2011-2020)[J]. Chinese Journal of Space Science, 2021, 41(1): 68-75
    [8]
    YANG W, LIN Y T. New lunar samples returned by Chang’E-5: opportunities for new discoveries and international collaboration[J]. The Innovation, 2021, 2(1): 100070 doi: 10.1016/j.xinn.2020.100070
    [9]
    CHEN Y, HU S, LI J H, et al. Chang’E-5 lunar samples shed new light on the Moon[J]. The Innovation Geoscience, 2023, 1(1): 100014
    [10]
    WU F Y, LI Q L, CHEN Y, et al. Lunar evolution in light of the chang’E-5 returned samples[J]. Annual Review of Earth and Planetary Sciences, 2024, 52: 159-194 doi: 10.1146/annurev-earth-040722-100453
    [11]
    DING Jielan, GUO Yue, LONG Yixuan, et al. Research trends of resource and environment management: a bibliometric analysis based on WoS publications[J]. Science Focus, 2021, 16(2): 1-24 (丁洁兰, 郭跃, 龙艺璇, 等. 资源与环境管理领域发展态势研究—基于WoS论文的文献计量分析[J]. 科学观察, 2021, 16(2): 1-24

    DING Jielan, GUO Yue, LONG Yixuan, et al. Research trends of resource and environment management: a bibliometric analysis based on WoS publications[J]. Science Focus, 2021, 16(2): 1-24
    [12]
    REN Shengli, HU Sufang, LIU Yahui, et al. Output and impact of geochemical articles authored by Chinese researchers from 2000 to 2021: statistical analysis based on SCI database[J]. Acta Petrologica Sinica, 2023, 39(1): 249-262 (任胜利, 胡素芳, 刘亚辉, 等. 2000~2021年我国地球化学研究论文的产出与影响: 基于SCI数据库的统计分析[J]. 岩石学报, 2023, 39(1): 249-262

    REN Shengli, HU Sufang, LIU Yahui, et al. Output and impact of geochemical articles authored by Chinese researchers from 2000 to 2021: statistical analysis based on SCI database[J]. Acta Petrologica Sinica, 2023, 39(1): 249-262
    [13]
    ZHANG Tengfei, WANG Yanhai, YANG Wei, et al. Frontiers in lunar science based on bibliometric analysis[J]. Acta Petrologica Sinica, 2023, 39(10): 3169-3183 (张腾飞, 王燕海, 杨蔚, 等. 基于文献计量的月球科学前沿研判[J]. 岩石学报, 2023, 39(10): 3169-3183

    ZHANG Tengfei, WANG Yanhai, YANG Wei, et al. Frontiers in lunar science based on bibliometric analysis[J]. Acta Petrologica Sinica, 2023, 39(10): 3169-3183
    [14]
    QIU Junping. Bibliometrics[M]. 2nd ed. Beijing: China Science Publishing & Media Ltd, 2019 (邱均平. 文献计量学[M]. 2版. 北京: 科学出版社, 2019

    QIU Junping. Bibliometrics[M]. 2nd ed. Beijing: China Science Publishing & Media Ltd, 2019
    [15]
    GAO Junkuan. Application of bibliometrics methods in scientific evaluation[J]. Documentation, Information :Times New Roman;">& Knowledge, 2005(2): 14-17 (高俊宽. 文献计量学方法在科学评价中的应用探讨[J]. 图书情报知识, 2005(2): 14-17

    GAO Junkuan. Application of bibliometrics methods in scientific evaluation[J]. Documentation, Information & Knowledge, 2005(2): 14-17
    [16]
    ZHANG Juan. The analysis of literature output and citation impact of Guangdong province natural science foundation[J]. Science and Technology Management Research, 2018, 38(6): 251-257 (张娟. 广东省自然科学基金项目的论文产出与影响力分析[J]. 科技管理研究, 2018, 38(6): 251-257

    ZHANG Juan. The analysis of literature output and citation impact of Guangdong province natural science foundation[J]. Science and Technology Management Research, 2018, 38(6): 251-257
    [17]
    SUN Jianhong, YUE Shuangshuang, XU Jianzhong. Research and application progress of inorganic flame retardants in China and abroad[J]. Inorganic Chemicals Industry, 2019, 51(2): 1-7 (孙建红, 岳双双, 徐建中. 国内外无机阻燃剂的研究与应用进展[J]. 无机盐工业, 2019, 51(2): 1-7

    SUN Jianhong, YUE Shuangshuang, XU Jianzhong. Research and application progress of inorganic flame retardants in China and abroad[J]. Inorganic Chemicals Industry, 2019, 51(2): 1-7
    [18]
    ZOU Y L, ZHANG L Y, LIU J Z, et al. Data analysis of Chang’E-1 gamma-ray spectrometer and global distribution of U, K, and Th elemental abundances[J]. Acta Geologica Sinica (English Edition), 2011, 85(6): 1299-1309 doi: 10.1111/j.1755-6724.2011.00589.x
    [19]
    WU Y Z. Major elements and Mg# of the moon: results from Chang’E-1 interference imaging spectrometer (IIM) data[J]. Geochimica et Cosmochimica Acta, 2012, 93: 214-234 doi: 10.1016/j.gca.2012.07.011
    [20]
    JIANG Jingshan, WANG Zhenzhan, LI Yun. Study on theory and application of CE-1 microwave sounding lunar surface[J]. Strategic Study of CAE, 2008, 10(6): 16-22 (姜景山, 王振占, 李芸. 嫦娥1号卫星微波探月技术机理和应用研究[J]. 中国工程科学, 2008, 10(6): 16-22

    JIANG Jingshan, WANG Zhenzhan, LI Yun. Study on theory and application of CE-1 microwave sounding lunar surface[J]. Strategic Study of CAE, 2008, 10(6): 16-22
    [21]
    Editorial Committee of the Chang’E-2 High-Resolution Lunar Imagery Atlas. Chang’E 2 High-Resolution Lunar Image Gallery[M]. Beijing: SinoMap Press, 2012 (《嫦娥二号高分辨率月球影像图集》编辑委员会. 嫦娥二号高分辨率月球影像图集[M]. 北京: 中国地图出版社, 2012

    Editorial Committee of the Chang’E-2 High-Resolution Lunar Imagery Atlas. Chang’E 2 High-Resolution Lunar Image Gallery[M]. Beijing: SinoMap Press, 2012
    [22]
    ZHU M H, CHANG J, XIE M G, et al. The uniform K distribution of the mare deposits in the Orientale Basin: insights from Chang’E-2 gamma-ray spectrometer[J]. Earth and Planetary Science Letters, 2015, 418: 172-180 doi: 10.1016/j.jpgl.2014.11.009
    [23]
    WANG X Q, CUI J, WANG X D, et al. The Solar Wind interactions with Lunar Magnetic Anomalies: a case study of the Chang’E-2 plasma data near the Serenitatis antipode[J]. Advances in Space Research, 2012, 50(12): 1600-1606 doi: 10.1016/j.asr.2011.12.003
    [24]
    ZHU M H, FA W Z, IP W H, et al. Morphology of asteroid (4179) Toutatis as imaged by Chang'E-2 spacecraft[J]. Geophysical Research Letters, 2014, 41(2): 328-333 doi: 10.1002/2013GL058914
    [25]
    SIEGLER M A, FENG J Q, LEHMAN-FRANCO K, et al. Remote detection of a lunar granitic batholith at Compton-Belkovich[J]. Nature, 2023, 620(7972): 116-121 doi: 10.1038/s41586-023-06183-5
    [26]
    XIAO L, ZHU P M, FANG G Y, et al. A young multilayered terrane of the northern Mare Imbrium revealed by Chang’E-3 mission[J]. Science, 2015, 347(6227): 1226-1229 doi: 10.1126/science.1259866
    [27]
    ZHANG J H, YANG W, HU S, et al. Volcanic history of the Imbrium basin: a close-up view from the lunar rover Yutu[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(17): 5342-5347 doi: 10.1073/pnas.1503082112
    [28]
    LING Z C, JOLLIFF B L, WANG A L, et al. Correlated compositional and mineralogical investigations at the Chang’E-3 landing site[J]. Nature Communications, 2015, 6: 8880 doi: 10.1038/ncomms9880
    [29]
    LI C L, LIU D W, LIU B, et al. Chang’E-4 initial spectroscopic identification of lunar far-side mantle-derived materials[J]. Nature, 2019, 569(7756): 378-382 doi: 10.1038/s41586-019-1189-0
    [30]
    GOU S, YUE Z Y, DI K C, et al. In situ spectral measurements of space weathering by Chang'E-4 rover[J]. Earth and Planetary Science Letters, 2020, 535: 116117 doi: 10.1016/j.jpgl.2020.116117
    [31]
    LIN H L, HE Z P, YANG W, et al. Olivine-norite rock detected by the lunar rover Yutu-2 likely crystallized from the SPA-impact melt pool[J]. National Science Review, 2020, 7(5): 913-920 doi: 10.1093/nsr/nwz183
    [32]
    LI C L, SU Y, PETTINELLI E, et al. The Moon’s farside shallow subsurface structure unveiled by Chang’E-4 Lunar Penetrating Radar[J]. Science Advances, 2020, 6(9): eaay6898 doi: 10.1126/sciadv.aay6898
    [33]
    LAI J L, XU Y, BUGIOLACCHI R, et al. First look by the Yutu-2 rover at the deep subsurface structure at the lunar farside[J]. Nature Communications, 2020, 11(1): 3426 doi: 10.1038/s41467-020-17262-w
    [34]
    ZHANG J H, ZHOU B, LIN Y T, et al. Lunar regolith and substructure at Chang’E-4 landing site in South Pole-Aitken basin[J]. Nature Astronomy, 2021, 5(1): 25-30 doi: 10.1038/s41550-020-1197-x
    [35]
    XIAO X, YU S R, HUANG J, et al. Thermophysical properties of the regolith on the lunar far side revealed by the in situ temperature probing of the Chang’E-4 mission[J]. National Science Review, 2022, 9(11): nwac175 doi: 10.1093/nsr/nwac175
    [36]
    CHE X C, NEMCHIN A, LIU D Y, et al. Age and composition of young basalts on the Moon, measured from samples returned by Chang’E-5[J]. Science, 2021, 374(6569): 887-890 doi: 10.1126/science.abl7957
    [37]
    LI Q L, ZHOU Q, LIU Y, et al. Two-billion-year-old volcanism on the Moon from Chang’ E-5 basalts[J]. Nature, 2021, 600(7887): 54-58 doi: 10.1038/s41586-021-04100-2
    [38]
    TIAN H C, ZHANG C, YANG W, et al. Surges in volcanic activity on the Moon about two billion years ago[J]. Nature Communications, 2023, 14(1): 3734 doi: 10.1038/s41467-023-39418-0
    [39]
    TIAN H C, WANG H, CHEN Y, et al. Non-KREEP origin for Chang’ E -5 basalts in the procellarum KREEP terrane[J]. Nature, 2021, 600(7887): 59-63 doi: 10.1038/s41586-021-04119-5
    [40]
    HU S, HE H C, JI J L, et al. A dry lunar mantle reservoir for young mare basalts of Chang’ E -5[J]. Nature, 2021, 600(7887): 49-53 doi: 10.1038/s41586-021-04107-9
    [41]
    CAI S H, QIN H F, WANG H P, et al. Persistent but weak magnetic field at the Moon’s midstage revealed by Chang’ E-5 basalt[J]. Science Advances, 2025, 11(1): eadp3333 doi: 10.1126/sciadv.adp3333
    [42]
    WANG B W, ZHANG Q W L, CHEN Y, et al. Returned samples indicate volcanism on the Moon 120 million years ago[J]. Science, 2024, 385(6713): 1077-1080 doi: 10.1126/science.adk6635
    [43]
    ZENG X J, LI X Y, LIU J Z. Exotic clasts in Chang’ E-5 regolith indicative of unexplored terrane on the Moon[J]. Nature Astronomy, 2023, 7(2): 152-159 doi: 10.1038/s41550-022-01840-7
    [44]
    YANG W, CHEN Y, WANG H, et al. Geochemistry of impact glasses in the Chang’ E-5 regolith: constraints on impact melting and the petrogenesis of local basalt[J]. Geochimica et Cosmochimica Acta, 2022, 335: 183-196 doi: 10.1016/j.gca.2022.08.030
    [45]
    LONG T, QIAN Y Q, NORMAN M D, et al. Constraining the formation and transport of lunar impact glasses using the ages and chemical compositions of Chang’ E-5 glass beads[J]. Science Advances, 2022, 8(39): eabq2542 doi: 10.1126/sciadv.abq2542
    [46]
    ZHOU C J, TANG H, LI X Y, et al. Chang’E-5 samples reveal high water content in lunar minerals[J]. Nature Communications, 2022, 13(1): 5336 doi: 10.1038/s41467-022-33095-1
    [47]
    XU Y C, TIAN H C, ZHANG C, et al. High abundance of solar wind-derived water in lunar soils from the middle latitude[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(51): e2214395119 doi: 10.1073/pnas.2214395119
    [48]
    HE H C, JI J L, ZHANG Y, et al. A solar wind-derived water reservoir on the Moon hosted by impact glass beads[J]. Nature Geoscience, 2023, 16(4): 294-300 doi: 10.1038/s41561-023-01159-6
    [49]
    ZHOU C J, MO B, TANG H, et al. Multiple sources of water preserved in impact glasses from Chang’ E-5 lunar soil[J]. Science Advances, 2024, 10(19): eadl2413 doi: 10.1126/sciadv.adl2413
    [50]
    LI C, GUO Z, LI Y, et al. Impact-driven disproportionation origin of nanophase iron particles in Chang’ E-5 lunar soil sample[J]. Nature Astronomy, 2022, 6(10): 1156-1162 doi: 10.1038/s41550-022-01763-3
    [51]
    GUO Z, LI C, LI Y, et al. Sub-microscopic magnetite and metallic iron particles formed by eutectic reaction in Chang’E-5 lunar soil[J]. Nature Communications, 2022, 13(1): 7177 doi: 10.1038/s41467-022-35009-7
    [52]
    XIAN H Y, ZHU J X, YANG Y P, et al. Ubiquitous and progressively increasing ferric iron content on the lunar surfaces revealed by the Chang’E-5 sample[J]. Nature Astronomy, 2023, 7(3): 280-286 doi: 10.1038/s41550-022-01855-0
    [53]
    LI J H, YANG W, LI X Y, et al. The Chang’ E-5 lunar samples stimulate the development of microanalysis techniques[J]. Atomic Spectroscopy, 2022, 43(1): 1-5 doi: 10.46770/as.2022.010
    [54]
    YANG W, LI J H, LI X Y, et al. Microanalysis techniques guarantee long-term research on Chang’ E-5 lunar samples[J]. Atomic Spectroscopy, 2022, 43(4): 266-271 doi: 10.46770/AS.2022.025
    [55]
    ZENG X G, LIU D W, CHEN Y, et al. Landing site of the Chang’ E-6 lunar farside sample return mission from the Apollo basin[J]. Nature Astronomy, 2023, 7(10): 1188-1197 doi: 10.1038/s41550-023-02038-1
    [56]
    QIAN Y Q, HEAD J, MICHALSKI J, et al. Long-lasting farside volcanism in the Apollo basin: Chang’ E-6 landing site[J]. Earth and Planetary Science Letters, 2024, 637: 118737 doi: 10.1016/j.jpgl.2024.118737
    [57]
    YANG W, HE Y Y, QIAN Y Q, et al. Scientists eager for Chang’ E-6 lunar farside samples to bring new discoveries[J]. The Innovation, 2024, 5(5): 100660 doi: 10.1016/j.xinn.2024.100660
    [58]
    YUE Z Y, GOU S, SUN S J, et al. Geological context of the Chang’ E-6 landing area and implications for sample analysis[J]. The Innovation, 2024, 5(5): 100663 doi: 10.1016/j.xinn.2024.100663
    [59]
    GUO D J, BAO Y M, LIU Y, et al. Geological investigation of the lunar Apollo basin: from surface composition to interior structure[J]. Earth and Planetary Science Letters, 2024, 646: 118986 doi: 10.1016/j.jpgl.2024.118986
    [60]
    JIA Z Y, CHEN J, KONG J Q, et al. Geologic context of Chang’ E-6 candidate landing regions and potential non-mare materials in the returned samples[J]. Icarus, 2024, 416: 116107 doi: 10.1016/j.icarus.2024.116107
    [61]
    LI C L, HU H, YANG M F, et al. Nature of the lunar far-side samples returned by the Chang’E-6 mission[J]. National Science Review, 2024, 11(11): nwae328 doi: 10.1093/nsr/nwae328
    [62]
    ZHANG Q W L, YANG M H, LI Q L, et al. Lunar farside volcanism 2.8 billion years ago from Chang’e-6 basalts[J]. Nature, 2025, 643(8071): 356-360 doi: 10.1038/s41586-024-08382-0
    [63]
    CUI Z X, YANG Q, ZHANG Y Q, et al. A sample of the Moon’s far side retrieved by Chang’e-6 contains 2.83-billion-year-old basalt[J]. Science, 2024, 386(6728): 1395-1399 doi: 10.1126/science.adt1093
    [64]
    HE H C, LI L X, HU S, et al. Water abundance in the lunar farside mantle[J]. Nature, 2025, 643(8071): 366-370 doi: 10.1038/s41586-025-08870-x
    [65]
    ZHOU Q, YANG W, CHU Z Y, et al. Ultra-depleted mantle source of basalts from the South Pole-Aitken basin[J]. Nature, 2025, 643(8071): 371-375 doi: 10.1038/s41586-025-09131-7
    [66]
    CAI S H, QI K X, YANG S H, et al. A reinforced lunar dynamo recorded by Chang’e-6 farside basalt[J]. Nature, 2025, 643(8071): 361-365 doi: 10.1038/s41586-024-08526-2
    [67]
    WANG C, JIA Y Z, XUE C B, et al. Scientific objectives and payload configuration of the Chang’E-7 mission[J]. National Science Review, 2024, 11(2): nwad329 doi: 10.1093/nsr/nwad329
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(12)

    Article Metrics

    Article Views(269) PDF Downloads(13) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return