Turn off MathJax
Article Contents
ZHONG Jia, ZOU Ziming, XU Jiyao, WU Kun, SUN Longchang, YUAN Wei, HU Xiaoyan. Standard Dataset of Ionospheric Equatorial Plasma Bubbles over Southern China Based on Airglow Observations (in Chinese). Chinese Journal of Space Science, 2026, 46(1): 1-11 doi: 10.11728/cjss2026.01.2025-0097
Citation: ZHONG Jia, ZOU Ziming, XU Jiyao, WU Kun, SUN Longchang, YUAN Wei, HU Xiaoyan. Standard Dataset of Ionospheric Equatorial Plasma Bubbles over Southern China Based on Airglow Observations (in Chinese). Chinese Journal of Space Science, 2026, 46(1): 1-11 doi: 10.11728/cjss2026.01.2025-0097

Standard Dataset of Ionospheric Equatorial Plasma Bubbles over Southern China Based on Airglow Observations

doi: 10.11728/cjss2026.01.2025-0097 cstr: 32142.14.cjss.2025-0097
  • Received Date: 2025-06-21
  • Rev Recd Date: 2025-10-22
  • Available Online: 2025-12-16
  • Airglow imaging observations, with their high spatiotemporal resolution and large-scale continuous monitoring capability, provide a crucial approach to studying the fine horizontal structures and evolutionary characteristics of ionospheric equatorial plasma bubbles. However, the current lack of high-quality, professionally annotated plasma bubble datasets severely restricts the application of supervised Artificial Intelligence (AI) algorithms in this field. To address this issue, this study constructs the first standardized dataset of ionospheric plasma bubbles based on airglow observations, including plasma bubble event data products and precise contour annotation data products. The dataset is derived from continuous observations over a full solar activity cycle (2012–2022) by a 630 nm band airglow imager at the Qujing Station in Yunnan, China. All raw data underwent standardized preprocessing, including image enhancement, azimuth correction, geometric distortion correction, and geographic coordinate projection. Expert teams then performed plasma bubble event identification and contour annotation. With a high temporal resolution of 3 minutes, the dataset systematically documents plasma bubble events under varying solar activity intensities, covering multiple typical morphologies such as shaped I- and Y-shaped structures. This dataset provides high-quality benchmark data for developing high-precision supervised AI algorithms, facilitating automated detection and morphological evolution research of ionospheric plasma bubbles based on airglow imaging.

     

  • loading
  • [1]
    OTT E. Theory of Rayleigh-Taylor bubbles in the equatorial ionosphere[J]. Journal of Geophysical Research: Space Physics, 1978, 83(A5): 2066-2070 doi: 10.1029/JA083iA05p02066
    [2]
    WEBER E J, BUCHAU J, EATHER R H, et al. North-south aligned equatorial airglow depletions[J]. Journal of Geophysical Research: Space Physics, 1978, 83(A2): 712-716 doi: 10.1029/JA083iA02p00712
    [3]
    KELLEY M C. The Earth’s ionosphere: Plasma physics and electrodynamics, Second Edition[M]. Boston: Academic Press, c2009. Hardback ISBN: 9780120884254
    [4]
    AGGSON T L, LAAKSO H, MAYNARD N C, et al. In situ observations of bifurcation of equatorial ionospheric plasma depletions[J]. Journal of Geophysical Research: Space Physics, 1996, 101(A3): 5125-5132 doi: 10.1029/95ja03837
    [5]
    IMOÇIN E, INYURT S, TEMUÇIN H, et al. Investigation of equatorial plasma bubble irregularities under different geomagnetic conditions during the equinoxes and the occurrence of plasma bubble suppression[J]. Acta Astronautica, 2020, 177: 341-350 doi: 10.1016/j.actaastro.2020.08.007
    [6]
    WOODMAN R F, LA HOZ C. Radar observations of F region equatorial irregularities[J]. Journal of Geophysical Research, 1976, 81(31): 5447-5466 doi: 10.1029/JA081i031p05447
    [7]
    WOODMAN R F. Spread F-an old equatorial aeronomy problem finally resolved[J]. Annales Geophysicae, 2009, 27(5): 1915-1934 doi: 10.5194/angeo-27-1915-2009
    [8]
    MENDILLO M, BAUMGARDNER J. Airglow characteristics of equatorial plasma depletions[J]. Journal of Geophysical Research: Space Physics, 1982, 87(A9): 7641-7652 doi: 10.1029/JA087iA09p07641
    [9]
    SAHAI Y, FAGUNDES P R, BITTENCOURT J A. Transequatorial F-region ionospheric plasma bubbles: solar cycle effects[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2000, 62(15): 1377-1383 doi: 10.1016/S1364-6826(00)00179-6
    [10]
    KELLEY M C, MAKELA J J, LEDVINA B M, et al. Observations of equatorial spread-F from Haleakala, Hawaii[J]. Geophysical Research Letters, 2002, 29(20): 2003 doi: 10.1029/2002GL015509
    [11]
    MAKELA J J, LEDVINA B M, KELLEY M C, et al. Analysis of the seasonal variations of equatorial plasma bubble occurrence observed from Haleakala, Hawaii[J]. Annales Geophysicae, 2004, 22(9): 3109-3121 doi: 10.5194/angeo-22-3109-2004
    [12]
    TAORI A, SINDHYA A. Measurements of equatorial plasma depletion velocity using 630 nm airglow imaging over a low-latitude Indian station[J]. Journal of Geophysical Research: Space Physics, 2014, 119(1): 396-401 doi: 10.1002/2013JA019465
    [13]
    NARAYANAN V L, GURUBARAN S, SHINY M B B, et al. Some new insights of the characteristics of equatorial plasma bubbles obtained from Indian region[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2017, 156: 80-86 doi: 10.1016/j.jastp.2017.03.006
    [14]
    WANG C. New chains of space weather monitoring stations in China[J]. Space Weather, 2010, 8(8): S08001 doi: 10.1029/2010SW000603
    [15]
    LI Q Z, XU J Y, GUSMAN A R, et al. Upper-atmosphere responses to the 2022 Hunga Tonga-Hunga Ha′apai volcanic eruption via acoustic gravity waves and air-sea interaction[J]. Atmospheric Chemistry and Physics, 2024, 24(14): 8343-8361 doi: 10.5194/acp-24-8343-2024
    [16]
    KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90 doi: 10.1145/3065386
    [17]
    SMIRNOV E A, TIMOSHENKO D M, ANDRIANOV S N. Comparison of regularization methods for ImageNet classification with deep convolutional neural networks[J]. AASRI Procedia, 2014, 6: 89-94 doi: 10.1016/j.aasri.2014.05.013
    [18]
    LIU L, OUYANG W L, WANG X G, et al. Deep learning for generic object detection: a survey[J]. International Journal of Computer Vision, 2020, 128(2): 261-318 doi: 10.1007/s11263-019-01247-4
    [19]
    LAI C, XU J Y, YUE J, et al. Automatic extraction of gravity waves from all-sky airglow image based on machine learning[J]. Remote Sensing, 2019, 11(13): 1516 doi: 10.3390/rs11131516
    [20]
    LAI C, XU J Y, LIN Z S, et al. Statistical characteristics of nighttime medium-scale traveling ionospheric disturbances from 10-years of airglow observation by the machine learning method[J]. Space Weather, 2023, 21(5): e2023SW003430 doi: 10.1029/2023SW003430
    [21]
    SUN Longchang. Study on Low- and Mid-Latitudinal Ionospheric Irregularity Based on Ground-Based and Satellite Observations[D]. Beijing: University of Chinese Academy of Sciences (National Space Science Center, Chinese Academy of Sciences), 2017: 47-48
    [22]
    GARCIA F J, TAYLOR M J, KELLEY M C. Two-dimensional spectral analysis of mesospheric airglow image data[J]. Applied Optics, 1997, 36(29): 7374-7385 doi: 10.1364/AO.36.007374
    [23]
    HUANG C Y, BURKE W J, MACHUZAK J S, et al. Equatorial plasma bubbles observed by DMSP satellites during a full solar cycle: toward a global climatology[J]. Journal of Geophysical Research: Space Physics, 2002, 107(A12): 1434 doi: 10.1029/2002JA009452
    [24]
    WU K, XU J Y, ZHU Y J, et al. Occurrence characteristics of branching structures in equatorial plasma bubbles: a statistical study based on all-sky imagers in China[J]. Earth and Planetary Physics, 2021, 5(5): 407-415 doi: 10.26464/epp2021044
    [25]
    ZHONG J, ZOU Z M, WU K, et al. Automatic detection and feature extraction of equatorial plasma bubbles from all-sky airglow image based on machine learning[J]. Space Weather, 2025, 23(5): e2025SW004336 doi: 10.1029/2025SW004336
    [26]
    HAASE J S, DAUTERMANN T, TAYLOR M J, et al. Propagation of plasma bubbles observed in Brazil from GPS and airglow data[J]. Advances in Space Research, 2011, 47(10): 1758-1776 doi: 10.1016/j.asr.2010.09.025
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(1)

    Article Metrics

    Article Views(558) PDF Downloads(12) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return