| Citation: | ZHU Feng, LI Dan, WANG Shuangfeng, YI Hong. Shape and Sooting Characteristics of Methane Laminar-jet Diffusion Flames in Microgravity (in Chinese). Chinese Journal of Space Science, 2026, 46(1): 1-10 doi: 10.11728/cjss2026.01.2025-0166 |
| [1] |
WILLIAMS F A. Progress in knowledge of flamelet structure and extinction[J]. Progress in Energy and Combustion Science, 2000, 26(4/5/6): 657-682 doi: 10.1016/s0360-1285(00)00012-5
|
| [2] |
SUNDERLAND P B, FAETH G M. Soot formation in hydrocarbon/air laminar jet diffusion flames[J]. Combustion and Flame, 1996, 105(1-2): 132-146 doi: 10.1016/0010-2180(95)00182-4
|
| [3] |
URBAN D L, YUAN Z G, SUNDERLAND P B, et al. Structure and soot properties of nonbuoyant ethylene/air laminar jet diffusion flames[J]. AIAA Journal, 1998, 36(8): 1346-1360 doi: 10.2514/2.542
|
| [4] |
URBAN D L, YUAN Z G, SUNDERLAND P B, et al. Smoke-point properties of non-buoyant round laminar jet diffusion flames[J]. Proceedings of the Combustion Institute, 2000, 28(2): 1965-1972 doi: 10.1016/S0082-0784(00)80602-5
|
| [5] |
JALAIN R, BONNETY J, MATYNIA A, et al. Influence of sub-atmospheric pressure on flame shape and sooting propensity in ethylene laminar coflow non-premixed flame[J]. Combustion and Flame, 2024, 259: 113173 doi: 10.1016/j.combustflame.2023.113173
|
| [6] |
SPALDING D B. Combustion and Mass Transfer: A Textbook with Multiple-Choice Exercises for Engineering Students[M]. Oxford: Pergamon, 1979: 185-195
|
| [7] |
LIN K C, FAETH G M. Shapes of nonbuoyant round luminous laminar-jet diffusion flames in coflowing air[J]. AIAA Journal, 1999, 37(6): 759-765 doi: 10.2514/2.785
|
| [8] |
LIN K C, FAETH G M, SUNDERLAND P B, et al. Shapes of nonbuoyant round luminous hydrocarbon/air laminar jet diffusion flames[J]. Combustion and Flame, 1999, 116(3): 415-431 doi: 10.1016/s0010-2180(98)00100-x
|
| [9] |
WALSH K T, FIELDING J, SMOOKE M D, et al. Experimental and computational study of temperature, species, and soot in buoyant and non-buoyant coflow laminar diffusion flames[J]. Proceedings of the Combustion Institute, 2000, 28(2): 1973-1979 doi: 10.1016/S0082-0784(00)80603-7
|
| [10] |
DIEZ F J, AALBURG C, SUNDERLAND P B, et al. Soot properties of laminar jet diffusion flames in microgravity[J]. Combustion and Flame, 2009, 156(8): 1514-1524
|
| [11] |
JEON B H, CHOI J H. Effect of buoyancy on soot formation in gas-jet diffusion flame[J]. Journal of Mechanical Science and Technology, 2010, 24(7): 1537-1543 doi: 10.1007/s12206-010-0406-4
|
| [12] |
REIMANN J, KUHLMANN S A, WILL S. Investigations on soot formation in heptane jet diffusion flames by optical techniques[J]. Microgravity Science and Technology, 2010, 22(4): 499-505 doi: 10.1007/s12217-010-9204-y
|
| [13] |
MA B, CAO S, GIASSI D, et al. An experimental and computational study of soot formation in a coflow jet flame under microgravity and normal gravity[J]. Proceedings of the Combustion Institute, 2015, 35(1): 839-846 doi: 10.1016/j.proci.2014.05.064
|
| [14] |
DOTSON K T, SUNDERLAND P B, YUAN Z G, et al. Laminar smoke points of coflowing flames in microgravity[J]. Fire Safety Journal, 2011, 46(8): 550-555 doi: 10.1016/j.firesaf.2011.08.002
|
| [15] |
KALVAKALA K C, KATTA V R, AGGARWAL S K. Effects of oxygen-enrichment and fuel unsaturation on soot and NOx emissions in ethylene, propane, and propene flames[J]. Combustion and Flame, 2018, 187: 217-229 doi: 10.1016/j.combustflame.2017.09.015
|
| [16] |
ZHANG Zhenzhong, KONG Wenjun, ZHANG Hualiang. Design of combustion science experimental system for China space station[J]. Chinese Journal of Space Science, 2020, 40(1): 72-78 (张振忠, 孔文俊, 张华良. 空间站燃烧科学实验系统设计[J]. 空间科学学报, 2020, 40(1): 72-78 doi: 10.11728/cjss2020.01.072
ZHANG Zhenzhong, KONG Wenjun, ZHANG Hualiang. Design of combustion science experimental system for China space station[J]. Chinese Journal of Space Science, 2020, 40(1): 72-78 doi: 10.11728/cjss2020.01.072
|
| [17] |
ZHANG Xiaowu, ZHENG Huilong, WANG Kun, et al. Combustion chamber design and analysis of the space station combustion science experimental system[J]. Chinese Journal of Space Science, 2021, 41(2): 301-309 (张晓武, 郑会龙, 王琨, 等. 中国空间站燃烧科学实验系统燃烧室设计与分析[J]. 空间科学学报, 2021, 41(2): 301-309
ZHANG Xiaowu, ZHENG Huilong, WANG Kun, et al. Combustion chamber design and analysis of the space station combustion science experimental system[J]. Chinese Journal of Space Science, 2021, 41(2): 301-309
|
| [18] |
WEN Y Z, LI L F, LI X X, et al. Extinction of microgravity partially premixed flame aboard the Chinese space station[J]. Proceedings of the Combustion Institute, 2024, 40(1-4): 105574 doi: 10.1016/j.proci.2024.105574
|
| [19] |
ZHAO P P, ZHANG X W, FANG Y, et al. On-orbit functional verification of combustion science experimental system in China Space Station[J]. Aerospace, 2025, 12(5): 448 doi: 10.3390/aerospace12050448
|
| [20] |
WALSH K T, FIELDING J, SMOOKE M D, et al. A comparison of computational and experimental lift-off heights of coflow laminar diffusion flames[J]. Proceedings of the Combustion Institute, 2005, 30(1): 357-365 doi: 10.1016/j.proci.2004.08.186
|
| [21] |
PRABASENA B, RÖDER M, KATHROTIA T, et al. Strain rate and fuel composition dependence of chemiluminescent species profiles in non-premixed counterflow flames: comparison with model results[J]. Applied Physics B, 2012, 107(3): 561-569 doi: 10.1007/s00340-012-4989-6
|
| [22] |
ZHANG Ting, GUO Qinghua, GONG Yan, et al. Luminescent properties of CH4/O2 co-flowing jet diffusion flame[J]. Journal of Combustion Science and Technology, 2012, 18(4): 353-358 (张婷, 郭庆华, 龚岩, 等. CH4/O2同轴射流扩散火焰辐射发光特性[J]. 燃烧科学与技术, 2012, 18(4): 353-358
ZHANG Ting, GUO Qinghua, GONG Yan, et al. Luminescent properties of CH4/O2 co-flowing jet diffusion flame[J]. Journal of Combustion Science and Technology, 2012, 18(4): 353-358
|
| [23] |
KENT J H, HONNERY D R. Soot mass growth in laminar diffusion flames—parametric modelling[M]//BOCKHORN H. Soot Formation in Combustion: Mechanisms and Models. Berlin: Springer, 1994: 199-220
|
| [24] |
LAUTENBERGER C W, DE RIS J L, DEMBSEY N A, et al. A simplified model for soot formation and oxidation in CFD simulation of non-premixed hydrocarbon flames[J]. Fire Safety Journal, 2005, 40(2): 141-176 doi: 10.1016/j.firesaf.2004.10.002
|
| [25] |
DU D X, AXELBAUM R L, LAW C K. The influence of carbon dioxide and oxygen as additives on soot formation in diffusion flames[J]. Symposium (International) on Combustion, 1991, 23(1): 1501-1507 doi: 10.1016/S0082-0784(06)80419-4
|
| [26] |
LIU F S, GUO H S, SMALLWOOD G J, et al. The chemical effects of carbon dioxide as an additive in an ethylene diffusion flame: implications for soot and NOx formation[J]. Combustion and Flame, 2001, 125(1-2): 778-787 doi: 10.1016/S0010-2180(00)00241-8
|
| [27] |
WANG Q, LEGROS G, BONNETY J, et al. Experimental characterization of the different nitrogen dilution effects on soot formation in ethylene diffusion flames[J]. Proceedings of the Combustion Institute, 2017, 36(2): 3227-3235 doi: 10.1016/j.proci.2016.07.063
|
| [28] |
GÜLDER Ö L, SNELLING D R. Influence of nitrogen dilution and flame temperature on soot formation in diffusion flames[J]. Combustion and Flame, 1993, 92(1-2): 115-124 doi: 10.1016/0010-2180(93)90202-E
|