2015, 35(4): 461-472.
doi: 10.11728/cjss2015.04.461
Abstract:
Based on a large database of satellite anomalies containing 2384 anomalies from NGDC (USA) and 263 malfunctions from 19 satellites of China (CHN), and with a large set of hourly space weather condition parameters data over the period of 1963-2012, this paper quantifies statistically space weather conditions which may induce different spacecraft anomalies including Single Event Upset (SEU), Electrostatic Discharge (ESD) induced by surface charging, and Electron Caused Electromagnetic Pulse (ECEMP) resulting from internal, deep dielectric charging. The results are as follows. (1) Most anomalies of SEU, ECEMP occurred on quiet space conditions, whereas geomagnetic storms tended to happen during the 3 days (72h) before or after satellite anomalies started, and the most probable time for anomalies was on the third day (48~72h) after the minimum Dst (Dstmin). (2) Geomagnetic activities and high-energy electrons showed apparent effects on anomalies of ESD. Occurrence probabilities of ESD and ECEMP clearly increased in equinoxes (March, September), and such seasonal characteristic was consistent with that in occurrence probabilities of magnetic storms and Relativistic Electrons Flux Enhancement Events (REFEE). For 93.6% anomalies of ESD, geomagnetic storms tended to happen during 72h before, after ESD started, and the most probable occurring time was 0~48h before Dstmin or 0~24h after Dstmin. 54.9% anomalies occurred on geomagnetic conditions of Dst <-30nT, and intensities of storms seemingly influenced ESD little. 40.6% anomalies occurred at the time when the hourly >2MeV electron flux is above 10^3pfu (1pfu =1cm-2·s-1·sr-1). For 81.9% anomalies of ESD, the hourly maximum of high-energy electron flux, during 72h before or after ESD started, was above 10^3pfu, and the most probable time interval was 48~72h before electron flux maximum, when 33.3% anomalies occurred. (3) High-energy electrons showed apparent effects on SEU of GEO from CHN database, 42.5% of anomalies occurring on conditions of electron flux ≥ 103pfu. For those anomalies, the hourly maximum of > 2MeV electron flux exceeded 103pfu during 72h before or after which started. The anomaly occurrence probabilities at the time of 48~72h before and 48~72h after electron flux maximum, were comparative, being about 23.0%. (4) Solar Proton Event (SPE) showed more influence on SEU of GEO. SPEs seemed no regular seasonal variations based on data during 1975-2013, while occurrence probabilities of SEUs showed little seasonal dependence. For 22.0% SEUs of GEO from CHN database, SPEs occurred during 72h before or after anomalies started, and SEUs might occur at any time of the 72h before or after the maximum of >10MeV proton flux.