Volume 43 Issue 2
Mar.  2023
Turn off MathJax
Article Contents
XIA Kai, XING Zanyang, ZHANG Qinghe, WANG Yanling, YANG Qiuju, LU Sheng, LIU Zhenping. Automatic Identification of Space Hurricane Based on Transfer Learning (in Chinese). Chinese Journal of Space Science, 2023, 43(2): 231-240 doi: 10.11728/cjss2023.02.2022-0031
Citation: XIA Kai, XING Zanyang, ZHANG Qinghe, WANG Yanling, YANG Qiuju, LU Sheng, LIU Zhenping. Automatic Identification of Space Hurricane Based on Transfer Learning (in Chinese). Chinese Journal of Space Science, 2023, 43(2): 231-240 doi: 10.11728/cjss2023.02.2022-0031

Automatic Identification of Space Hurricane Based on Transfer Learning

doi: 10.11728/cjss2023.02.2022-0031 cstr: 32142.14.cjss2023.02.2022-0031
  • Received Date: 2022-07-11
  • Accepted Date: 2022-11-21
  • Rev Recd Date: 2022-10-22
  • Available Online: 2022-11-28
  • Space hurricane is a newly discovered large-scale and bright spot-like auroral structure in the polar cap region, which visually characterizes a solar wind energy injection phenomenon comparable to a magnetic storm during the geomagnetic calm period, this updates the understanding of the solar wind-magnetosphere-ionosphere coupling process, it is of great scientific importance to accurately and efficiently identify space hurricane events from the huge amount of auroral data. Deep learning is used, six networks are compared, and an automatic space hurricane identification method based on Transfer learning and EfficientNetB2 is proposed, validate the effectiveness of the model in DMSP/SSUSI observations from 2005 to 2021 with an accuracy of 97.7%. The results show that the method can be used to automatically identify Space hurricane events from a large amount of satellite-based auroral observation data.

     

  • loading
  • [1]
    FELDSHTEYN Y I. Some problems concerning the morphology of auroras and magnetic disturbances at high latitudes[J]. Geomagnetism Aeronomy, 1963, 3: 183-192
    [2]
    FREY H U, IMMEL T J, LU G, et al. Properties of localized, high latitude, dayside aurora[J]. Journal of Geophysical Research: Space Physics, 2003, 108(A4): 8008 doi: 10.1029/2002JA009332
    [3]
    XING Z Y, ZHANG Q H, HAN D S, et al. Conjugate observations of the evolution of polar cap arcs in both hemispheres[J]. Journal of Geophysical Research: Space Physics, 2018, 123(3): 1794-1805
    [4]
    HAN D S, FENG H T, ZHANG H, et al. A new type of polar cap arc observed in the ~1500 MLT Sector: 1. Northern hemisphere observations[J]. Geophysical Research Letters, 2020, 47(20): e2020GL090261
    [5]
    ZHANG Q H, ZHANG Y L, WANG C, et al. A space hurricane over the Earth’s polar ionosphere[J]. Nature Communications, 2021, 12(1): 1207 doi: 10.1038/s41467-021-21459-y
    [6]
    SYRJÄSUO M T, DONOVAN E F. Diurnal auroral occurrence statistics obtained via machine vision[J]. Annales Geophysicae, 2004, 22(4): 1103-1113 doi: 10.5194/angeo-22-1103-2004
    [7]
    LI Y C, JIANG N K. An aurora image classification method based on compressive sensing and distributed WKNN[C]//2018 IEEE 42 nd Annual Computer Software and Applications Conference (COMPSAC). Tokyo: IEEE, 2018: 347-354
    [8]
    KIM S K, RANGANATH H S. Content-based retrieval of aurora images based on the Hierarchical Representation[C]//12 th International Conference on Advanced Concepts for Intelligent Vision Systems. Sydney: Springer, 2010: 249-260
    [9]
    GONZALEZ R C. Deep convolutional neural networks (Lecture Notes)[J]. IEEE Signal Processing Magazine, 2018, 35(6): 79-87 doi: 10.1109/MSP.2018.2842646
    [10]
    佟欣, 邹自明, 白曦, 等. 喉区极光的机器识别[J]. 空间科学学报, 2021, 41(4): 654-666 doi: 10.11728/cjss2021.04.654

    TONG Xin, ZOU Ziming, BAI Xi, et al. Machine identification of throat aurora[J]. Chinese Journal of Space Science, 2021, 41(4): 654-666 doi: 10.11728/cjss2021.04.654
    [11]
    CLAUSEN L B N, NICKISCH H. Automatic classification of auroral images from the Oslo Auroral THEMIS (OATH) data set using machine learning[J]. Journal of Geophysical Research: Space Physics, 2018, 123(7): 5640-5647 doi: 10.1029/2018JA025274
    [12]
    KVAMMEN A, WICKSTRØM K, MCKAY D, et al. Auroral image classification with deep neural networks[J]. Journal of Geophysical Research: Space Physics, 2020, 125(10): e2020JA027808
    [13]
    DONAHUE J, JIA Y Q, VINYALS O, et al. DeCAF: a deep convolutional activation feature for generic visual recognition[C]//Proceedings of the 31 st International Conference on Machine Learning. Beijing: ACM, 2014: I-647-I-655
    [14]
    李彦枝, 陈昌红, 谢晓芳, 基于改进卷积神经网络的极光图像分类算法研究[J]. 南京邮电大学学报(自然科学版), 2019, 39(6): 86-93

    LI Y Z, CHEN C H, XIE X F. Research on aurora image classification algorithm based on improved convolutional neural network[J]. Journal of Nanjing University of Posts and Telecommunications (Natural Science Edition), 2019, 39(6): 86-93
    [15]
    SADO P, CLAUSEN L B N, MILOCH W J, et al. Transfer learning aurora image classification and magnetic disturbance evaluation[J]. Journal of Geophysical Research: Space Physics, 2022, 127(1): e2021JA029683
    [16]
    Simonyan K, Zisserman A. Very Deep Convolutional Networks for Large-Scale Image Recognition[J]. Computer Science, 2014. DOI: 10.48550/arXiv.1409.1556
    [17]
    HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778
    [18]
    TAN M X, LE Q. EfficientNet: Rethinking model scaling for convolutional neural networks[C]//Proceedings of the 36 th International Conference on Machine Learning. Long Beach: PMLR, 2019: 6105-6114
    [19]
    TAN M X, LE Q. EfficientNetV2: smaller models and faster training[C]//Proceedings of the 38th International Conference on Machine Learning. ElectrNetwork: PMLR, 2021: 10096-10106
    [20]
    LI H, PAN J K, ZENG H D, et al. Identification of specific substances in the FAIMS spectra of complex mixtures using deep learning[J]. Sensors, 2021, 21(18): 6160 doi: 10.3390/s21186160
    [21]
    PAN S J, YANG Q. A survey on transfer learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(10): 1345-1359 doi: 10.1109/TKDE.2009.191
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(3)

    Article Metrics

    Article Views(772) PDF Downloads(61) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return