| Citation: | LIU Guoqi, LI Haoyu, XIE Chaodi, LIU Benyu, LIU Jin, LI Xiang, LIU Kui, LI Haotong. Analysis of Variation Characteristic of TEC at Kunming Region and Comparison with IRI-2020 during Descending Phase of Solar Activity (in Chinese). Chinese Journal of Space Science, 2023, 43(2): 241-250 doi: 10.11728/cjss2023.02.2022-0066 |
| [1] |
刘立波, 万卫星. 我国空间物理研究进展[J]. 地球物理学报, 2014, 57(11): 3493-3501 doi: 10.6038/cjg20141101
LIU Libo, WAN Weixing. A brief overview on the issue on space physics and space weather[J]. Chinese Journal of Geophysics, 2014, 57(11): 3493-3501 doi: 10.6038/cjg20141101
|
| [2] |
PANDA S K, GEDAM S S, RAJARAM G. Study of Ionospheric TEC from GPS observations and comparisons with IRI and SPIM model predictions in the low latitude anomaly Indian subcontinental region[J]. Advances in Space Research, 2015, 55(8): 1948-1964 doi: 10.1016/j.asr.2014.09.004
|
| [3] |
KLOBUCHAR J A. Ionospheric effects on GPS[J]. GPS World, 1991, 2(4): 48-51
|
| [4] |
OLUWADARE T S, THAI C N, AKALA A O O, et al. Characterization of GPS-TEC over African equatorial ionization anomaly (EIA) region during 2009-2016[J]. Advances in Space Research, 2019, 63(1): 282-301 doi: 10.1016/j.asr.2018.08.044
|
| [5] |
BALAN N, BAILEY G J. Equatorial plasma fountain and its effects: possibility of an additional layer[J]. Journal of Geophysical Research: Space Physics, 1995, 100(A11): 21421-21432 doi: 10.1029/95JA01555
|
| [6] |
萧佐, 张东和. 通过GPS测量数据研究电离层电子总含量的逐日变化[J]. 空间科学学报, 2000, 20(2): 97-102 doi: 10.3969/j.issn.0254-6124.2000.02.001
XIAO Zuo, ZHANG Donghe. An approach to study the day-to-day variations of ionospheric TEC directly by GPS time-delay signals[J]. Chinese Journal of Space Science, 2000, 20(2): 97-102 doi: 10.3969/j.issn.0254-6124.2000.02.001
|
| [7] |
徐继生, 朱劼, 程光晖. 2004年11月强磁暴期间武汉电离层TEC的响应和振幅闪烁特征的GPS观测[J]. 地球物理学报, 2006, 49(4): 950-956 doi: 10.3321/j.issn:0001-5733.2006.04.004
XU Jisheng, ZHU Jie, CHENG Guanghui. GPS observations of ionospheric effects of the major storm of Nov. 7-10, 2004[J]. Chinese Journal of Geophysics, 2006, 49(4): 950-956 doi: 10.3321/j.issn:0001-5733.2006.04.004
|
| [8] |
刘国其, 龚建村, 黄文耿, 等. 太阳活动低年低纬地区VTEC变化特性分析[J]. 空间科学学报, 2013, 33(3): 270-276 doi: 10.11728/cjss2013.03.270
LIU Guoqi, GONG Jiancun, HUANG Wengeng, et al. Analysis of variation characteristic of VTEC in the low latitude region during low solar activity[J]. Chinese Journal of Space Science, 2013, 33(3): 270-276 doi: 10.11728/cjss2013.03.270
|
| [9] |
BILITZA D, ALTADILL D, TRUHLIK V, et al. International reference ionosphere 2016: from ionospheric climate to real-time weather predictions[J]. Space Weather, 2017, 15(2): 418-429 doi: 10.1002/2016SW001593
|
| [10] |
XIANG Y, YUAN Y B, WANG N B. Comparison of IRI-2012 and rapid GIMs with GNSS-derived TEC over China[M]//SUN J D, JIAO W H, WU H T, et al. China Satellite Navigation Conference (CSNC) 2014 Proceedings: Volume II. Berlin, Heidelberg: Springer, 2014: 465-476
|
| [11] |
WAN Q T, MA G Y, LI J H, et al. A comparison of GPS-TEC with IRI-TEC at low latitudes in China in 2006[J]. Advances in Space Research, 2017, 60(2): 250-256 doi: 10.1016/j.asr.2016.12.002
|
| [12] |
WAN Q T, MA G Y, LI J H, et al. Performance evaluation of IRI-2016 with GPS-derived TEC at the meridian of 110o E in China of 2014[J]. Journal of Atmospheric and Solar–Terrestrial Physics, 2020, 201: 105206 doi: 10.1016/j.jastp.2020.105206
|
| [13] |
DAVIES K. Ionospheric Radio[M]. London: Peter Peregrinus Ltd, 1990
|
| [14] |
BAGIYA M S, JOSHI H P, IYER K N, et al. TEC variations during low solar activity period (2005– 2007) near the equatorial ionospheric anomaly crest region in India[J]. Annales Geophysicae, 2009, 27(3): 1047-1057 doi: 10.5194/angeo-27-1047-2009
|
| [15] |
RISHBETH H, LYON A J, PEART M. Diffusion in the equatorial F layer[J]. Journal of Geophysics Research, 1963, 68(9): 2559-2569 doi: 10.1029/JZ068i009p02559
|
| [16] |
TITHERIDGE J E. Winds in the ionosphere–A review[J]. Journal of Atmospheric and Terrestrial Physics, 1995, 57(14): 1681-1714 doi: 10.1016/0021-9169(95)00091-F
|
| [17] |
FEJER B G. Low latitude electrodynamic plasma drifts: a review[J]. Journal of Atmospheric and Terrestrial Physics, 1991, 53(8): 677-693 doi: 10.1016/0021-9169(91)90121-M
|
| [18] |
RISHBETH H, MÜLLER-WODARG I C F, ZOU L, et al. Annual and semiannual variations in the ionospheric F2-layer: II. Physical discussion[J]. Annales Geophysicae, 2000, 18(8): 945-956 doi: 10.1007/s00585-000-0945-6
|
| [19] |
AKALA A O O, OYEDOKUN O J, BELLO D. Seasonal variation of quiet-time TEC over West and Central African equatorial/low-latitude ionosphere (2011-2014)[J]. Acta Geophysica, 2021, 69(6): 2483-2495 doi: 10.1007/s11600-021-00679-2
|
| [20] |
BHUYAN P K, BORAH R R. TEC derived from GPS network in India and comparison with the IRI[J]. Advances in Space Research, 2007, 39(5): 830-840 doi: 10.1016/j.asr.2006.12.042
|
| [21] |
WU C C, LIOU K, SHAN S J, et al. Variation of ionospheric total electron content in Taiwan region of the equatorial anomaly from 1994 to 2003[J]. Advances in Space Research, 2008, 41(4): 611-616 doi: 10.1016/j.asr.2007.06.013
|
| [22] |
ABDU M A, BRUM C G M, BATISTA I S, et al. Solar flux effects on equatorial ionization anomaly and total electron content over Brazil: observational results versus IRI representations[J]. Advances in Space Research, 2008, 42(4): 617-625 doi: 10.1016/j.asr.2007.09.043
|
| [23] |
KOURIS S S, POLIMERIS K V, Cander L R, et al. Solar and latitude dependence of TEC and SLAB thickness[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2008, 70(10): 1351-1365 doi: 10.1016/j.jastp.2008.03.009
|
| [24] |
DABAS R S, LAKSHMI D R, REDDY B M. Solar activity dependence of ionospheric electron content and slab thickness using different solar indices[J]. Pure and Applied Geophysics, 1993, 140(4): 721-728 doi: 10.1007/BF00876585
|
| [25] |
PATEL N C, KARIA S P, PATHAK K N. GPS-TEC variation during low to high solar activity period (2010-2014) under the northern crest of Indian equatorial ionization anomaly region[J]. Positioning, 2017, 8(2): 13-35 doi: 10.4236/pos.2017.82002
|
| [26] |
LISSA D, VENKATESH K, PRASAD D S V V D, et al. GPS TEC variations under quiet and disturbed geomagnetic conditions during the descending phase of 24 th solar cycle over the Indian equatorial and low latitude regions[J]. Advances in Space Research, 2021, 68(4): 1836-1849 doi: 10.1016/j.asr.2021.04.021
|
| [27] |
BHUYAN P K, HAZARIKA R. GPS TEC near the crest of the EIA at 95°E during the ascending half of solar cycle 24 and comparison with IRI simulations[J]. Advances in Space Research, 2013, 52(7): 1247-1260 doi: 10.1016/j.asr.2013.06.029
|
| [28] |
CHAKRABORTY M, KUMAR S, KUMAR DE B, et al. Latitudinal characteristics of GPS derived ionospheric TEC: a comparative study with IRI 2012 model[J]. Annals of Geophysics, 2014, 57(5): A0539
|
| [29] |
KUMAR S, TAN E L, MURTI D S. Impacts of solar activity on performance of the IRI-2012 model predictions from low to mid latitudes[J]. Earth, Planets and Space, 2015, 67: 42 doi: 10.1186/s40623-015-0205-3
|
| [30] |
COÏSSON P, RADICELLA S M. Ionospheric topside models compared with experimental electron density profiles[J]. Annals of Geophysics, 2005, 48(3): 497-503
|
| [31] |
KARIA S P, PATEL N C, PATHAK K N. A comparison of TEC predicted by IRI-2012 with that measured at three different stations in low latitude Indian region for the years (2010-2012)[J]. Advances in Space Research, 2017, 60(2): 238-249 doi: 10.1016/j.asr.2016.10.022
|