Volume 43 Issue 2
Mar.  2023
Turn off MathJax
Article Contents
WANG Cong, YANG Junfeng, CHENG Xuan, GUO Wenjie, LI Jiawei, YANG Guanglin, ZHANG Xiaoxin, YANG Zhongdong, HU Xiuqing, GU Songyan, ZHANG Peng. Investigation of the Global Gravity Wave Activity Characteristics from the FY-3C Satellite Observation Data (in Chinese). Chinese Journal of Space Science, 2023, 43(2): 260-272 doi: 10.11728/cjss2023.02.211108111
Citation: WANG Cong, YANG Junfeng, CHENG Xuan, GUO Wenjie, LI Jiawei, YANG Guanglin, ZHANG Xiaoxin, YANG Zhongdong, HU Xiuqing, GU Songyan, ZHANG Peng. Investigation of the Global Gravity Wave Activity Characteristics from the FY-3C Satellite Observation Data (in Chinese). Chinese Journal of Space Science, 2023, 43(2): 260-272 doi: 10.11728/cjss2023.02.211108111

Investigation of the Global Gravity Wave Activity Characteristics from the FY-3C Satellite Observation Data

doi: 10.11728/cjss2023.02.211108111 cstr: 32142.14.cjss2023.02.211108111
  • Received Date: 2021-11-05
  • Accepted Date: 2022-09-06
  • Rev Recd Date: 2022-11-08
  • Available Online: 2023-04-03
  • Atmospheric gravity wave is one of the important dynamical processes in near-space, and exists widely in the global atmosphere. The investigation of its global distribution and variation is of great significance for understanding atmospheric dynamics. Though occultation, the Global Navigation Satellite System (GNSS) has the advantages of obtaining the global coverage and high resolution temperature information of near-space atmosphere, and is therefore widely used in near-space atmospheric gravity wave research. The global gravity wave distribution from 2015 to 2019 is analyzed by using the detection data of the Global Navigation Satellite System Occultation Sounder (GNOS) on the FY-3C satellite. The seasonal and interannual variations of global gravity waves as well as the global distribution and characteristics of long and short wave gravity waves are analyzed emphatically. The analysis show that the gravity wave intensity in winter and summer is stronger than that in spring and autumn, and the value of the gravity wave intensity in winter hemisphere is higher than that in summer hemisphere. It is also found that the intensity of gravity wave disturbance increases gradually with the increase of height. Combined with years of data analysis, it is found that the short-wave gravity wave intensity is greater than the long-wave gravity wave intensity in the altitude range of 20~50 km.

     

  • loading
  • [1]
    ALLEN S J, VINCENT R A. Gravity wave activity in the lower atmosphere: seasonal and latitudinal variations[J]. Journal of Geophysical Research: Atmospheres, 1995, 100(D1): 1327-1350 doi: 10.1029/94JD02688
    [2]
    FRITTS D C, ALEXANDER M J. Gravity wave dynamics and effects in the middle atmosphere[J]. Reviews of Geophysics, 2012, 50(3): RG3004-1
    [3]
    吕达仁, 陈泽宇, 郭霞, 等. 临近空间大气环境研究现状[J]. 力学进展, 2009, 39(6): 674-682 doi: 10.3321/j.issn:1000-0992.2009.06.008

    LYU Daren, CHEN Zeyu, GUO Xia, et al. Recent progress in near space atmospheric environment study[J]. Advances in Mechanics, 2009, 39(6): 674-682 doi: 10.3321/j.issn:1000-0992.2009.06.008
    [4]
    徐凯, 姚志刚, 韩志刚, 等. 临近空间重力波强扰动的卫星观测研究进展[J]. 地球科学进展, 2017, 32(1): 66-74

    XU Kai, YAO Zhigang, HAN Zhigang, et al. Recent process in near-space gravity wave analysis based on satellite measurements[J]. Advances in Earth Science, 2017, 32(1): 66-74
    [5]
    WU D L, PREUSSE P, ECKERMANN S D, et al. Remote sounding of atmospheric gravity waves with satellite limb and nadir techniques[J]. Advances in Space Research, 2006, 37(12): 2269-2277 doi: 10.1016/j.asr.2005.07.031
    [6]
    ALEXANDER M J, GILLE J, CAVANAUGH C, et al. Global estimates of gravity wave momentum flux from High Resolution Dynamics Limb Sounder observations[J]. Journal of Geophysical Research: Atmospheres, 2008, 113(D15): D15S18
    [7]
    WU D L, ECKERMANN S D. Global gravity wave variances from Aura MLS: characteristics and interpretation[J]. Journal of the Atmospheric Sciences, 2008, 65(12): 3695-3718 doi: 10.1175/2008JAS2489.1
    [8]
    PREUSSE P, ECKERMANN S D, ERN M, et al. Global ray tracing simulations of the SABER gravity wave climatology[J]. Journal of Geophysical Research: Atmospheres, 2009, 114(D8): D08126
    [9]
    张云, 熊建刚, 万卫星. 中层大气重力波的全球分布特征[J]. 地球物理学报, 2011, 54(7): 1711-1717

    ZHANG Yun, XIONG Jiangang, WAN Weixing. Analysis on the global morphology of middle atmospheric gravity waves[J]. Chinese Journal of Geophysics, 2011, 54(7): 1711-1717
    [10]
    HOFFMANN L, XUE X, ALEXANDER M J. A global view of stratospheric gravity wave hotspots located with Atmospheric Infrared Sounder observations[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(2): 416-434 doi: 10.1029/2012JD018658
    [11]
    LIU X, YUE J, XU J Y, et al. Gravity wave variations in the polar stratosphere and mesosphere from SOFIE/AIM temperature observations[J]. Journal of Geophysical Research: Atmospheres, 2014, 119(12): 7368-7381 doi: 10.1002/2013JD021439
    [12]
    MILLER S D, STRAKA W C, YUE J, et al. Upper atmospheric gravity wave details revealed in nightglow satellite imagery[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(49): E6728-E6735
    [13]
    姚志刚, 孙睿, 赵增亮, 等. 风云三号卫星微波观测的临近空间大气扰动特征[J]. 地球物理学报, 2019, 62(2): 473-488

    YAO Zhigang, SUN Rui, ZHAO Zengliang, et al. Gravity waves in the near space observed by the microwave temperature sounder of the FY-3C meteorology satellite[J]. Chinese Journal of Geophysics, 2019, 62(2): 473-488
    [14]
    金双根, 高超, 李君海. 利用FY-3C气象卫星GNSS掩星估计全球重力波变化与分析[J]. 南京信息工程大学学报(自然科学版), 2020, 12(1): 57-67

    JIN Shuanggen, GAO Chao, LI Junhai. Estimation and analysis of global gravity wave using GNSS radio occultation data from FY-3C meteorological satellite[J]. Journal of Nanjing University of Information Science & Technology (Natural Science Edition), 2020, 12(1): 57-67
    [15]
    SUN Y Q, BAI W H, LIU C L, et al. The FengYun-3 C radio occultation sounder GNOS: a review of the mission and its early results and science applications[J]. Atmospheric Measurement Techniques, 2018, 11(10): 5797-5811 doi: 10.5194/amt-11-5797-2018
    [16]
    LIAO M, ZHANG P, YANG G L, et al. Preliminary validation of the refractivity from the new radio occultation sounder GNOS/FY-3C[J]. Atmospheric Measurement Techniques, 2016, 9(2): 781-792 doi: 10.5194/amt-9-781-2016
    [17]
    LIU Z Y, SUN Y Q, BAI W H, et al. Validation of preliminary results of thermal tropopause derived from FY-3 C GNOS data[J]. Remote Sensing, 2019, 11(9): 1139 doi: 10.3390/rs11091139
    [18]
    LINDZEN R S. Turbulence and stress owing to gravity wave and tidal breakdown[J]. Journal of Geophysical Research: Oceans, 1981, 86(C10): 9707-9714 doi: 10.1029/JC086iC10p09707
    [19]
    陈操. 中层大气重力波的瑞利激光雷达初步研究[D]. 合肥: 中国科学技术大学, 2010

    CHEN Cao. The Preliminary Studies on the Gravity Waves of Mid-atmosphere Through Rayleigh Lidar Techniques[D]. Hefei: University of Science and Technology of China, 2010
    [20]
    肖存英. 临近空间大气动力学特性研究[D]. 北京: 中国科学院研究生院(空间科学与应用研究中心), 2009

    XIAO Cunying. Researches on the Dynamics of the Atmosphere in the Near Space[D]. Beijing: Graduate University of Chinese Academy of Sciences (Center for Space Science and Applied Research), 2009
    [21]
    陈泽宇, 吕达仁. 利用卫星数据考察平流层传播性行星波活动特征[J]. 地球科学进展, 2009, 24(3): 320-330 doi: 10.3321/j.issn:1001-8166.2009.03.010

    CHEN Zeyu, LYU Daren. Characteristics of the stratospheric travelling planetary waves revealed by using satellite data[J]. Advances in Earth Science, 2009, 24(3): 320-330 doi: 10.3321/j.issn:1001-8166.2009.03.010
    [22]
    肖存英, 胡雄, 王博, 等. 临近空间大气扰动变化特性的定量研究[J]. 地球物理学报, 2016, 59(4): 1211-1221

    XIAO Cunying, HU Xiong, WANG Bo, et al. Quantitative studies on the variations of near space atmospheric fluctuation[J]. Chinese Journal of Geophysics, 2016, 59(4): 1211-1221
    [23]
    郭文杰, 姚志刚, 杨钧烽, 等. AIRS观测资料研究全球平流层重力波特性[J]. 空间科学学报, 2021, 41(4): 609-616 doi: 10.11728/cjss2021.04.609

    GUO Wenjie, YAO Zhigang, YANG Junfeng, et al. Research on global stratospheric gravity wave characteristics by AIRS observation data[J]. Chinese Journal of Space Science, 2021, 41(4): 609-616 doi: 10.11728/cjss2021.04.609
    [24]
    YUE J, HOFFMANN L, ALEXANDER M J. Simultaneous observations of convective gravity waves from a ground-based airglow imager and the AIRS satellite experiment[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(8): 3178-3191 doi: 10.1002/jgrd.50341
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)

    Article Metrics

    Article Views(894) PDF Downloads(62) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return