| Citation: | ZHANG Lingshu, ZOU Ziming, BAI Xi. Clustering of Ultraviolet Auroral Oval Images Based on Deep Representation Learning (in Chinese). Chinese Journal of Space Science, 2023, 43(2): 219-230 doi: 10.11728/cjss2023.02.220127012 |
| [1] |
KEIKA K, NAKAMURA R, BAUMJOHANN W, et al. Substorm expansion triggered by a sudden impulse front propagating from the dayside magnetopause[J]. Journal of Geophysical Research: Space Physics, 2009, 114(52): A00C24
|
| [2] |
BOUDOURIDIS A, ZESTA E, LYONS R, et al. Effect of solar wind pressure pulses on the size and strength of the auroral oval[J]. Journal of Geophysical Research: Space Physics, 2003, 108(A4): 8012 doi: 10.1029/2002JA009373
|
| [3] |
YANG Q J, WANG Y Y, REN J. Auroral image classification with very limited labeled data using few-shot learning[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 6506805
|
| [4] |
KVAMMEN A, WICKSTRØM K, MCKAY D, et al. Auroral image classification with deep neural networks[J]. Journal of Geophysical Research: Space Physics, 2020, 125(10): e2020JA027808
|
| [5] |
YANG Q J, ZHOU P H. Representation and classification of auroral images based on convolutional neural networks[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 523-534 doi: 10.1109/JSTARS.2020.2969245
|
| [6] |
AKASOFU S I. Auroral morphology: a historical account and major auroral features during auroral substorms[M]//KEILING A, DONOVAN E, BAGENAL F, et al. Auroral Phenomenology and Magnetospheric Processes: Earth and Other Planets. Washington DC: American Geophysical Union, 2012: 29-38
|
| [7] |
HENDERSON M G. Auroral substorms, poleward boundary activations, auroral streamers, omega bands, and onset precursor activity[M]//KEILING A, DONOVAN E, BAGENAL F, et al. Auroral Phenomenology and Magnetospheric Processes: Earth and Other Planets. Washington DC: American Geophysical Union, 2012: 39-54
|
| [8] |
GRODENT D, BONFOND B, YAO Z, et al. Jupiter’s aurora observed with HST during Juno orbits 3 to 7[J]. Journal of Geophysical Research: Space Physics, 2018, 123(5): 3299-3319 doi: 10.1002/2017JA025046
|
| [9] |
NICHOLS J D, KAMRAN A, MILAN S E. Machine learning analysis of Jupiter’s far‐ultraviolet auroral morphology[J]. Journal of Geophysical Research: Space Physics, 2019, 124(11): 8884-8892 doi: 10.1029/2019JA027120
|
| [10] |
HE K M, FAN H Q, WU Y X, et al. Momentum contrast for unsupervised visual representation learning[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle: IEEE, 2020
|
| [11] |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas: IEEE, 2016
|
| [12] |
CHEN X L, FAN H Q, GIRSHICK R, et al. Improved baselines with momentum contrastive learning[OL]. arXiv preprint arXiv: 2003.04297, 2020
|
| [13] |
MCLACHLAN G J, BASFORD K E. Mixture models: inference and applications to clustering[M]. New York: Marcel Dekker, 1988
|
| [14] |
TIBSHIRANI R, WALTHER G, HASTIE T. Estimating the number of clusters in a data set via the gap statistic[J]. Journal of the Royal Statistical Society Series B (Statistical Methodology), 2001, 63(2): 411-423 doi: 10.1111/1467-9868.00293
|
| [15] |
胡泽骏, 韩冰, 连慧芳. 基于广义回归神经网络的行星际/太阳风参数和地磁指数的紫外极光强度建模[J]. 地球物理学报, 2020, 63(5): 1738-1750
HU Zejun, HAN Bing, LIAN Huifang. Modeling of ultraviolet auroral intensity based on Generalized Regression Neural Network associated with IMF/solar wind and geomagnetic parameters[J]. Chinese Journal of Geophysics, 2020, 63(5): 1738-1750
|
| [16] |
韩冰, 连慧芳, 胡泽骏. 基于神经网络模型的紫外极光卵边界建模[J]. 中国科学: 技术科学, 2019, 49(5): 531-542 doi: 10.1360/N092018-00227
HAN Bing, LIAN Huifang, HU Zejun. Modeling of ultraviolet auroral oval boundaries based on neural network technology[J]. Scientia Sinica Technologica, 2019, 49(5): 531-542 doi: 10.1360/N092018-00227
|
| [17] |
王倩, 孟庆虎, 胡泽骏, 等. 紫外极光图像极光卵提取方法及其评估[J]. 极地研究, 2011, 23(3): 168-177
WANG Qian, MENG Qinghu, HU Zejun, et al. A method for extracting auroral ovals in UVI images and its evaluation[J]. Chinese Journal of Polar Research, 2011, 23(3): 168-177
|
| [18] |
SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]//3rd International Conference on Learning Representations. San Diego: ICLR, 2014
|
| [19] |
BOYKOV Y Y, JOLLY M P. Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images[C]//Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001. Vancouver: IEEE, 2001
|
| [20] |
王梓涵, 佟继周, 邹自明, 等. 基于U-net的紫外极光观测极光卵形态提取[J]. 空间科学学报, 2021, 41(4): 667-675 doi: 10.11728/cjss2021.04.667
WANG Zihan, TONG Jizhou, ZOU Ziming, et al. Auroral oval morphology extraction based on u-net from ultraviolet aurora observation[J]. Chinese Journal of Space Science, 2021, 41(4): 667-675 doi: 10.11728/cjss2021.04.667
|
| [21] |
VAN DER MAATEN L, HINTON G. Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008, 9(11): 2579-2605
|
| [22] |
RONEN M, FINDER S E, FREIFELD O. DeepDPM: Deep clustering with an unknown number of clusters[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 9851-9860
|