Volume 43 Issue 2
Mar.  2023
Turn off MathJax
Article Contents
ZENG Erkang, WU Haiyan, FENG Zhun. Sky Area Target of Opportunity Mission Planning Method (in Chinese). Chinese Journal of Space Science, 2023, 43(2): 361-368 doi: 10.11728/cjss2023.02.220225020
Citation: ZENG Erkang, WU Haiyan, FENG Zhun. Sky Area Target of Opportunity Mission Planning Method (in Chinese). Chinese Journal of Space Science, 2023, 43(2): 361-368 doi: 10.11728/cjss2023.02.220225020

Sky Area Target of Opportunity Mission Planning Method

doi: 10.11728/cjss2023.02.220225020 cstr: 32142.14.cjss2023.02.220225020
  • Received Date: 2022-02-24
  • Accepted Date: 2022-05-11
  • Rev Recd Date: 2022-12-12
  • Available Online: 2023-04-10
  • In regard to the planning problem of ToO-MM (a type of sky area Target of Opportunity) for SVOM (Space-based multi-band astronomical Variable Objects Monitor) mission, the constraints and optimization goals are abstracted, the mathematical description model is established, and the algorithm TMHPA (ToO-MM Heuristic Planning Algorithm) based on heuristic strategy is designed. The algorithm aims at maximizing satellite scientific observation benefits and maximizing emergency task response, and considering the influence of satellite attitude adjustment time, the observation tasks and data transmission tasks can be planned. An example is given to verify the effectiveness of this algorithm. The results show that the method executed in this paper is not only able to solve the problem of ToO-MM, but also to ensure the convergence and timeliness. TMHPA can give the target observation sequence of the satellite within the sky area and the time period arrangement for performing data transmission tasks. Compared with GA (Genetic Algorithm) and DEA (Differential Evolution Algorithm), it has a shorter computational time overhead and a smaller attitude adjustment time. The TMHPA algorithm could achieve the rapid response to the target observation, and meet the design requirements as well.

     

  • loading
  • [1]
    PAUL J, WEI J Y, BASA S, et al. The Chinese-French SVOM mission for gamma-ray burst studies[J]. Comptes Rendus Physique, 2011, 12(3): 298-308 doi: 10.1016/j.crhy.2011.01.009
    [2]
    CASTELLINI F, LAVAGNA M. Advanced planning and scheduling initiative’s XMAS tool: AI for automatic scheduling of XMM-Newton long term plan[C]//6 th International Workshop on Planning and Scheduling for Space. Pasadena: European Space Agency Publications Division, 2009
    [3]
    LU F J, ZHANG S N. Status of the hard X-ray modulation telescope (insight-HXMT) project[J]. Chinese Journal of Space Science, 2018, 38(5): 623-626 doi: 10.11728/cjss2018.05.623
    [4]
    李新乔, 文向阳, 安正华, 等. GECAM卫星有效载荷介绍[J]. 中国科学: 物理学 力学 天文学, 2020, 50(12): 129508

    LI Xinqiao, WEN Xiangyang, AN Zhenghua, et al. The GECAM and its payload[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2020, 50(12): 129508
    [5]
    FRATINI S, CESTA A. The APSI framework: a platform for timeline synthesis[C]//Proceedings of the 1 st Workshops on Planning and Scheduling with Timelines. Atibaia: PSTL, 2012: 8-15
    [6]
    KITCHING M, POLICELLA N. A local search solution for the INTEGRAL long term planning[C]//7 th International Workshop on Planning and Scheduling for Space. Darmstadt: IWPSS, 2011
    [7]
    吴海燕, 孟新, 张玉珠, 等. 面向天文观测的空间科学卫星任务规划方法研究[J]. 空间科学学报, 2013, 33(5): 561-568 doi: 10.11728/cjss2013.05.561

    WU Haiyan, MENG Xin, ZHANG Yuzhu, et al. Research on the planning method for astronomy observation mission[J]. Chinese Journal of Space Science, 2013, 33(5): 561-568 doi: 10.11728/cjss2013.05.561
    [8]
    刘薇, 林宝军. 天文卫星巡天扫描智能规划模型及仿真[J]. 系统仿真学报, 2007, 19(3): 654-656 doi: 10.3969/j.issn.1004-731X.2007.03.047

    LIU Wei, LIN Baojun. Intelligent model of astronomical satellite using GA for scanning the celestial sphere[J]. Journal of System Simulation, 2007, 19(3): 654-656 doi: 10.3969/j.issn.1004-731X.2007.03.047
    [9]
    黄跃, 屈进禄, 贾淑梅, 等. HXMT卫星长期任务规划算法[J]. 空间科学学报, 2017, 37(6): 766-772 doi: 10.11728/cjss2017.06.766

    HUANG Yue, QU Jinlu, JIA Shumei, et al. Long-term planning algorithm for the HXMT mission[J]. Chinese Journal of Space Science, 2017, 37(6): 766-772 doi: 10.11728/cjss2017.06.766
    [10]
    刘雯, 李立钢. 基于改进遗传算法的天文卫星任务规划研究[J]. 计算机仿真, 2014, 31(12): 54-58 doi: 10.3969/j.issn.1006-9348.2014.12.013

    LIU Wen, LI Ligang. Mission planning of space astronomical satellite based on improved genetic algorithm[J]. Computer Simulation, 2014, 31(12): 54-58 doi: 10.3969/j.issn.1006-9348.2014.12.013
    [11]
    韩传奇, 刘玉荣, 李虎. 基于改进遗传算法对小卫星星群任务规划研究[J]. 空间科学学报, 2019, 39(1): 129-134 doi: 10.11728/cjss2019.01.129

    HAN Chuanqi, LIU Yurong, LI Hu. Mission planning for small satellite constellations based on improved genetic algorithm[J]. Chinese Journal of Space Science, 2019, 39(1): 129-134 doi: 10.11728/cjss2019.01.129
    [12]
    刘勇. 天文卫星机遇目标任务重规划方法研究[D]. 北京: 中国科学院大学, 2019

    LIU Yong. Research on Astronomical Satellite Target of Opportunity Task Re-planning Algorithm[D]. Beijing: University of Chinese Academy of Sciences, 2019
    [13]
    韩鹏, 郭延宁, 李传江, 等. 基于相对成像时刻编码遗传算法的敏捷成像卫星任务规划[J]. 宇航学报, 2021, 42(11): 1427-1438 doi: 10.3873/j.issn.1000-1328.2021.11.009

    HAN Peng, GUO Yanning, LI Chuanjiang, et al. A relative imaging time coding-based genetic algorithm for agile imaging satellite task planning[J]. Journal of Astronautics, 2021, 42(11): 1427-1438 doi: 10.3873/j.issn.1000-1328.2021.11.009
    [14]
    甘岚, 龚胜平. 机动卫星星座对多目标成像任务规划[J]. 清华大学学报(自然科学版), 2021, 61(3): 240-247 doi: 10.16511/j.cnki.qhdxxb.2020.26.013

    GAN Lan, GONG Shengping. Observation mission planning for maneuverable satellite constellations towards multiple targets[J]. Journal of Tsinghua University (Science and Technology), 2021, 61(3): 240-247 doi: 10.16511/j.cnki.qhdxxb.2020.26.013
    [15]
    KIM H, CHANG Y K. Mission scheduling optimization of SAR satellite constellation for minimizing system response time[J]. Aerospace Science and Technology, 2015, 40: 17-32 doi: 10.1016/j.ast.2014.10.006
    [16]
    赵琳, 王硕, 郝勇, 等. 基于地面任务-空间姿态映射的敏捷卫星任务规划[J]. 航空学报, 2018, 39(10): 322066 doi: 10.7527/S1000-6893.2018.22066

    ZHAO Lin, WANG Shuo, HAO Yong, et al. Mission planning for agile satellite based on the mapping relationship between ground missions and spatial attitudes[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(10): 322066 doi: 10.7527/S1000-6893.2018.22066
    [17]
    毛李恒, 邓清, 刘柔妮, 等. 针对多星多任务仿真调度的关键路径遗传算法[J]. 系统仿真学报, 2021, 33(1): 205-214 doi: 10.16182/j.issn1004731x.joss.19-0301

    MAO Liheng, DENG Qing, LIU Rouni, et al. CPM-GA for multi-satellite and multi-task simulation scheduling[J]. Journal of System Simulation, 2021, 33(1): 205-214 doi: 10.16182/j.issn1004731x.joss.19-0301
    [18]
    于静, 杨文沅, 刘晓路, 等. 成像卫星密集任务合成方法及其调度算法[J]. 华中科技大学学报(自然科学版), 2021, 49(10): 73-78 doi: 10.13245/j.hust.211012

    YU Jing, YANG Wenyuan, LIU Xiaolu, et al. Intensive task merging method and scheduling algorithm for imaging satellites[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2021, 49(10): 73-78 doi: 10.13245/j.hust.211012
    [19]
    徐子羚. Tiling覆盖策略的天文卫星机遇目标任务规划方法研究[D]. 北京: 中国科学院大学(中国科学院国家空间科学中心), 2021

    XU Ziling. Research on Astronomical Satellite ToO Planning under Tiling Coverage Strategy[D]. Beijing: University of Chinese Academy of Sciences (National Space Science Center), 2021
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(5)

    Article Metrics

    Article Views(416) PDF Downloads(47) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return