Volume 43 Issue 2
Mar.  2023
Turn off MathJax
Article Contents
YANG Moxin, ZHANG Aibing, XIE Shijun. Lightweight Design and Verification of Electrostatic Analyzer for Space Exploration (in Chinese). Chinese Journal of Space Science, 2023, 43(2): 330-339 doi: 10.11728/cjss2023.02.220303024
Citation: YANG Moxin, ZHANG Aibing, XIE Shijun. Lightweight Design and Verification of Electrostatic Analyzer for Space Exploration (in Chinese). Chinese Journal of Space Science, 2023, 43(2): 330-339 doi: 10.11728/cjss2023.02.220303024

Lightweight Design and Verification of Electrostatic Analyzer for Space Exploration

doi: 10.11728/cjss2023.02.220303024 cstr: 32142.14.cjss2023.02.220303024
  • Received Date: 2022-03-02
  • Rev Recd Date: 2022-11-07
  • Available Online: 2023-04-08
  • Aiming at the lightweight requirement of space exploration load, the electrostatic analyzer for space plasma exploration is taken as the research object, and the lightweight design and verification are carried out. In the selection of materials and processing methods, additive manufacturing, a new processing method, is fully used breaking the traditional idea of pursuing low-density materials in lightweight design. By comparing the weight and mechanical performance of equipment under various materials and processing methods, aluminum alloy is determined as the main material and 3D printing as the main processing method. In the aspect of structure design, based on the advantages of 3D printing processing, the structural thickness of each part of the equipment is reduced, and stiffeners is appropriately set to solve the problem that the thin wall is prone to deform during post-processing. The mass of the equipment designed in the above scheme is reduced to 1.2 kg, which is 45% lower than that of the equipment using magnesium alloy and conventional processing methods (2.2 kg). Taking the identification-level mechanical test conditions of typical aerospace missions as input, the finite element simulation of the design model was carried out, and the physical processing, assembly and mechanical tests were completed to verify the anti-mechanical properties of the design.

     

  • loading
  • [1]
    李莲, 魏威. 基于财务管理视角的SpaceX公司火箭低成本分析及启示[J]. 中国航天, 2018(8): 51-55 doi: 10.3969/j.issn.1002-7742.2018.08.016

    LI Lian, WEI Wei. Analysis and enlightenment on the low cost of SpaceX’ Rocket based on the perspective of financial management[J]. Aerospace China, 2018(8): 51-55 doi: 10.3969/j.issn.1002-7742.2018.08.016
    [2]
    钟群鹏, 有移亮, 张峥, 等. 机械装备构件轻量化主要技术途径的探讨[J]. 机械工程学报, 2012, 48(18): 2-6 doi: 10.3901/JME.2012.18.002

    ZHONG Qunpeng, YOU Yiliang, ZHANG Zheng, et al. On the main technical ways to lightweight mechanical equipment components[J]. Journal of Mechanical Engineering, 2012, 48(18): 2-6 doi: 10.3901/JME.2012.18.002
    [3]
    孔令高, 苏斌, 关燚炳, 等. 行星等离子体探测技术[J]. 地球与行星物理论评, 2021, 52(5): 459-472

    KONG Linggao, SU Bin, GUAN Yibing, et al. Planetary plasma measurement technology[J]. Reviews of Geophysics and Planetary Physics, 2021, 52(5): 459-472
    [4]
    WIlSON G R, MALDONADO C A, ENLOE C L, et al. The integrated miniaturized electrostatic analyzer: a space plasma environment sensor[J]. Review of Scientific Instruments, 2020, 91(12): 123302 doi: 10.1063/5.0019354
    [5]
    孔令高, 张爱兵, 王世金, 等. 基于SIMION软件的空间等离子体探测器的数值仿真[J]. 中国空间科学技术, 2012, 32(4): 71-76 doi: 10.3780/j.issn.1000-758X.2012.04.010

    KONG Linggao, ZHANG Aibing, WANG Shijin, et al. Numerical simulation analysis of space plasma detector based on SIMION[J]. Chinese Space Science and Technology, 2012, 32(4): 71-76 doi: 10.3780/j.issn.1000-758X.2012.04.010
    [6]
    GAO Tianfeng, KONG Linggao, SU Bin, et al. Design and simulation of the detector for outer heliosphere pickup ions[J/OL]. Journal of Beijing University of Aeronautics and Astronautics: 1-17[2022-03-02]. https://doi.org/10.13700/j.bh.1001-5965.2021.0243
    [7]
    高玉玲, 唐成, 陈兴泉, 等. 某型战斗部样品离心加速度试验误差分析[J]. 环境技术, 2018(S1): 153-156 doi: 10.3969/j.issn.1004-7204.2018.z1.032

    GAO Yuling, TANG Cheng, CHEN Xingquan, et al. Centrifugal acceleration test deviation analysis of a certain type of warhead sample[J]. Environmental Technology, 2018(S1): 153-156 doi: 10.3969/j.issn.1004-7204.2018.z1.032
    [8]
    孙杰明, 杨静静, 马海涛. 正弦振动试验参数及其数学描述[J]. 实验室科学, 2020, 23(2): 65-68 doi: 10.3969/j.issn.1672-4305.2020.02.015

    SUN Jieming, YANG Jingjing, MA Haitao. Sinusoidal vibration test parameters and mathematical description[J]. Laboratory Science, 2020, 23(2): 65-68 doi: 10.3969/j.issn.1672-4305.2020.02.015
    [9]
    刘阳, 熊望娥, 申维娜, 等. 基于ANSYS的某航天光学指向摆镜系统的随机振动分析[J]. 机械设计与制造, 2010(4): 18-20 doi: 10.3969/j.issn.1001-3997.2010.04.008

    LIU Yang, XIONG Wang’e, SHEN Weina, et al. Random vibration analysis on swing mirror system of space optical based on ANSYS[J]. Machinery Design & Manufacture, 2010(4): 18-20 doi: 10.3969/j.issn.1001-3997.2010.04.008
    [10]
    石蒙, 彭扬林, 刘洪英, 等. 冲击响应谱试验技术研究进展[J]. 环境技术, 2021, 39(5): 47-51,61 doi: 10.3969/j.issn.1004-7204.2021.05.020

    SHI Meng, PENG Yanglin, LIU Hongying, et al. Development of shock response spectrum test research[J]. Environmental Technology, 2021, 39(5): 47-51,61 doi: 10.3969/j.issn.1004-7204.2021.05.020
    [11]
    MEDELLIN-CASTILLO H I, ZARAGOZA-SIQUEIROS J. Design and manufacturing strategies for fused deposition modelling in additive manufacturing: a review[J]. Chinese Journal of Mechanical Engineering, 2019, 32(1): 53 doi: 10.1186/s10033-019-0368-0
    [12]
    刘景博, 刘世锋, 杨鑫, 等. 金属增材制造技术轻量化应用研究进展[J]. 中国材料进展, 2020, 39(2): 163-168 doi: 10.7502/j.issn.1674-3962.201808002

    LIU Jingbo, LIU Shifeng, YANG Xin, et al. Progress in lightweight application research of additive manufacturing technology[J]. Materials China, 2020, 39(2): 163-168 doi: 10.7502/j.issn.1674-3962.201808002
    [13]
    HYER H, ZHOU L, BENSON G, et al. Additive manufacturing of dense WE43 Mg alloy by laser powder bed fusion[J]. Additive Manufacturing, 2020, 33: 101123 doi: 10.1016/j.addma.2020.101123
    [14]
    何先定, 吴凌, 安治国. 选区激光熔化成形AlSi10 Mg铝合金零件支撑结构的研究[J]. 锻压技术, 2020, 45(9): 113-117,136

    HE Xianding, WU Ling, AN Zhiguo. Research on support structure for AlSi10 Mg aluminum alloy parts by selective laser melting[J]. Forging & Stamping Technology, 2020, 45(9): 113-117,136
    [15]
    顾冬冬, 张红梅, 陈洪宇, 等. 航空航天高性能金属材料构件激光增材制造[J]. 中国激光, 2020, 47(5): 0500002 doi: 10.3788/CJL202047.0500002

    GU Dongdong, ZHANG Hongmei, CHEN Hongyu, et al. Laser Additive manufacturing of high-performance metallic aerospace components[J]. Chinese Journal of Lasers, 2020, 47(5): 0500002 doi: 10.3788/CJL202047.0500002
    [16]
    马玉斐, 滕强. 加筋球面壳稳定承载能力研究[J]. 舰船科学技术, 2018, 40(17): 62-67 doi: 10.3404/j.issn.1672-7649.2018.09.012

    MA Yufei, TENG Qiang. Research on the stable bearing capacity of reinforced spherical shell[J]. Ship Science and Technology, 2018, 40(17): 62-67 doi: 10.3404/j.issn.1672-7649.2018.09.012
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(18)  / Tables(12)

    Article Metrics

    Article Views(393) PDF Downloads(34) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return