Volume 43 Issue 3
Jul.  2023
Turn off MathJax
Article Contents
ZHU Yan, ZHONG Dingkun. A Time-varying Volume Data Transfer Function for Interplanetary Numerical Simulation Data (in Chinese). Chinese Journal of Space Science, 2023, 43(3): 423-433 doi: 10.11728/cjss2023.03.2022-0011
Citation: ZHU Yan, ZHONG Dingkun. A Time-varying Volume Data Transfer Function for Interplanetary Numerical Simulation Data (in Chinese). Chinese Journal of Space Science, 2023, 43(3): 423-433 doi: 10.11728/cjss2023.03.2022-0011

A Time-varying Volume Data Transfer Function for Interplanetary Numerical Simulation Data

doi: 10.11728/cjss2023.03.2022-0011 cstr: 32142.14.cjss2023.03.2022-0011
  • Received Date: 2022-01-08
  • Accepted Date: 2022-06-10
  • Rev Recd Date: 2022-12-18
  • Available Online: 2023-02-14
  • Understanding the interplanetary propagation of solar storms is the foundation of space environmental forecasting and services. The visualization of numerical model simulation data is an important method to analyze the propagation dynamics process and verify the validity of the model. In order to facilitate the visualization analysis of the numerical model simulation data with increasing simulation scale, a Transfer Function for Time-varying Volume data rendering (TFTV) based on the characteristics of time domain and frequency domain is proposed. The algorithm is designed to extract images including motion regions based on the K-Nearest Neighbor (KNN) background subtraction method, and then the three-dimensional subset of the moving region can be extracted according to the mapping relationship between the image and the volume data to achieve the reduction of large-scale grid volume data. Then the Frequency Tuned (FT) salient region detection algorithm is used to detect Coronal Mass Ejection (CME) in motion area images, and according to the CME detection results, a color inverse mapping algorithm is designed to find the boundary threshold between the CME and interplanetary space background. Finally, the transfer function design in volume visualization is adaptively adjusted based on the threshold to realize the fast 3D visualization of CME in the motion region at each time step. The experimental results show that TFTV transfer function algorithm can adapt to the numerical model simulation data in static and dynamic backgrounds. Compared with the linear transfer function, the occlusion of the line in sight direction is effectively avoided, the change of relative momentum is intuitively and automatically displayed, and the evolution process of CME in interplanetary space is traced. The extraction of local regions reduces data redundancy, and the process of adaptively adjusting the transfer function by automatically analyzing the data with the help of algorithms avoids the inefficiency of manual adjustment.

     

  • loading
  • [1]
    MIKIĆ Z, DOWNS C, LINKER J A, et al. Predicting the corona for the 21 August 2017 total solar eclipse[J]. Nature Astronomy, 2018, 2(11): 913-921 doi: 10.1038/s41550-018-0562-5
    [2]
    BOCK A, PEMBROKE A, MAYS M L, et al. Visual verification of space weather ensemble simulations[C]//2015 IEEE Scientific Visualization Conference (SciVis). Chicago, IL, USA: IEEE, 2015: 17-24
    [3]
    CARLBAUM O, NOVÉN M. Real-time magnetohydrodynamic space weather visualization[D]. Linköping: Linköping University, 2017
    [4]
    ODSTRCIL D. Modeling 3 D solar wind structure[J]. Advances in Space Research, 2003, 32(4): 497-506 doi: 10.1016/S0273-1177(03)00332-6
    [5]
    LJUNG P, KRÜGER J, GROLLER E, et al. State of the art in transfer functions for direct volume rendering[J]. Computer Graphics Forum, 2016, 35(3): 669-691 doi: 10.1111/cgf.12934
    [6]
    ROETTGER S, BAUER M, STAMMINGER M. Spatialized transfer functions[C]//Proceedings of the Seventh Joint Eurographics/IEEE VGTC Conference on Visualization. Leeds: Eurographics Association, 2005: 271-278
    [7]
    ŠEREDA P, VILANOVA A, GERRITSEN F A. Automating transfer function design for volume rendering using hierarchical clustering of material boundaries[C]//Proceedings of the Eighth Joint Eurographics/IEEE VGTC Conference on Visualization. Lisbon: Eurographics Association, 2006: 243-250
    [8]
    LAN Y S, DING Y M, LUO X, et al. A clustering based transfer function for volume rendering using gray-gradient mode histogram[J]. IEEE Access, 2019, 7: 80737-80747 doi: 10.1109/ACCESS.2019.2923080
    [9]
    MACIEJEWSKI R, WOO I, CHEN W, et al. Structuring feature space: A non-parametric method for volumetric transfer function generation[J]. IEEE Transactions on Visualization and Computer Graphics, 2009, 15(6): 1473-1480 doi: 10.1109/TVCG.2009.185
    [10]
    WANG Y H, CHEN W, SHAN G H, et al. Volume exploration using ellipsoidal gaussian transfer functions[C]//2010 IEEE Pacific Visualization Symposium (PacificVis). Taipei, China: IEEE, 2010: 25-32
    [11]
    WANG Y H, CHEN W, ZHANG J, et al. Efficient volume exploration using the gaussian mixture model[J]. IEEE Transactions on Visualization and Computer Graphics, 2011, 17(11): 1560-1573 doi: 10.1109/TVCG.2011.97
    [12]
    WANG Y H, ZHANG J, LEHMANN D J, et al. Automating transfer function design with valley cell-based clustering of 2 D density plots[J]. Computer Graphics Forum, 2012, 31(3pt4): 1295-1304 doi: 10.1111/j.1467-8659.2012.03122.x
    [13]
    ROPINSKI T, PRAßNI J, STEINICKE F, et al. Stroke-based transfer function design[C]//Proceedings of the Fifth Eurographics / IEEE VGTC Conference on Point-Based Graphics. Los Angeles, California, USA: Eurographics Association, 2008: 41-48
    [14]
    MA K L, WANG C L, YU H F, et al. In-situ processing and visualization for ultrascale simulations[J]. Journal of Physics: Conference Series, 2007, 78: 012043 doi: 10.1088/1742-6596/78/1/012043
    [15]
    WANG K C, LU K W, WEI T H, et al. Statistical visualization and analysis of large data using a value-based spatial distribution[C]//2017 IEEE Pacific Visualization Symposium (PacificVis). Seoul, Korea: IEEE, 2017: 161-170
    [16]
    JUNG Y, KIM J, KUMAR A, et al. Feature of interest-based direct volume rendering using contextual saliency-driven ray profile analysis[J]. Computer Graphics Forum, 2018, 37(6): 5-19 doi: 10.1111/cgf.13308
    [17]
    WANG K C, SHAREEF N, SHEN H W. Image and distribution based volume rendering for large data sets[C]//2018 IEEE Pacific Visualization Symposium (PacificVis). Kobe, Japan: IEEE, 2018: 26-35
    [18]
    LIU Y S, SHEN F, YANG Y. Numerical Simulation on the propagation and deflection of fast coronal mass ejections (CMEs) Interacting with a corotating interaction region in interplanetary space[J]. The Astrophysical Journal, 2019, 887(2): 150 doi: 10.3847/1538-4357/ab543e
    [19]
    ZIVKOVIC Z, VAN DER HEIJDEN F. Efficient adaptive density estimation per image pixel for the task of background subtraction[J]. Pattern Recognition Letters, 2006, 27(7): 773-780 doi: 10.1016/j.patrec.2005.11.005
    [20]
    ACHANTA R, HEMAMI S, ESTRADA F, et al. Frequency-tuned salient region detection[C]//2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, FL, USA: IEEE, 2009: 1597-1604
    [21]
    COVER T, HART P. Nearest neighbor pattern classification[J]. IEEE Transactions on Information Theory, 1967, 13(1): 21-27 doi: 10.1109/TIT.1967.1053964
    [22]
    ELGAMMAL A, HARWOOD D, DAVIS L. Non-parametric model for background subtraction[C]//Proceedings of the 6th European Conference on Computer Vision. Dublin: Springer, 2000: 751-767
    [23]
    Zou X, Hu Y, Tian Z, et al. Logistic regression model optimization and case analysis[C]//2019 IEEE 7th International Conference on Computer Science and Network Technology (ICCSNT). IEEE, 2019: 135-139
    [24]
    FENG X. Magnetohydrodynamic Modeling of the Solar Corona and Heliosphere[M]. Singapore: Springer, 2020
    [25]
    ZHOU Y F, FENG X S. Numerical study of the propagation characteristics of coronal mass ejections in a structured ambient solar wind[J]. Journal of Geophysical Research: Space Physics, 2017, 122(2): 1451-1462 doi: 10.1002/2016JA023053
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article Views(635) PDF Downloads(101) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return