Citation: | YANG Kai, HU Shengbo, ZHANG Xin. Spectrum Sensing for Combined GEO and LEO Satellites Based on Bi-LSTM and Bayesian Likelihood Ratio Test (in Chinese). Chinese Journal of Space Science, 2023, 43(3): 567-575 doi: 10.11728/cjss2023.03.2022-0017 |
[1] |
YOU X H, WANG C X, HUANG J, et al. Towards 6 G wireless communication networks: vision, enabling technologies, and new paradigm shifts[J]. Science China Information Sciences, 2021, 64(1): 110301 doi: 10.1007/s11432-020-2955-6
|
[2] |
LIU R, ZHU S B, LI C Q. Review of cognitive satellite communication technology[C]//2020 IEEE 9 th Joint International Information Technology and Artificial Intelligence Conference (ITAIC). Chongqing: IEEE, 2020: 1378-1385
|
[3] |
LIU C, LIU X M, LIANG Y C. Deep CNN for spectrum sensing in cognitive radio[C]//ICC 2019 - 2019 IEEE International Conference on Communications (ICC). Shanghai: IEEE, 2019: 1-6
|
[4] |
NI T, DING X J, WANG Y F, et al. Spectrum sensing via temporal convolutional network[J]. China Communications, 2021, 18(9): 37-47 doi: 10.23919/JCC.2021.09.004
|
[5] |
TIAN J J, PEI Y Y, HUANG Y D, et al. Modulation-constrained clustering approach to blind modulation classification for MIMO systems[J]. IEEE Transactions on Cognitive Communications and Networking, 2018, 4(4): 894-907 doi: 10.1109/TCCN.2018.2879370
|
[6] |
JIANG C X, ZHANG H J, REN Y, et al. Machine learning paradigms for next-generation wireless networks[J]. IEEE Wireless Communications, 2017, 24(2): 98-105 doi: 10.1109/MWC.2016.1500356WC
|
[7] |
CLANCY C, HECKER J, STUNTEBECK E, et al. Applications of machine learning to cognitive radio networks[J]. IEEE Wireless Communications, 2007, 14(4): 47-52 doi: 10.1109/MWC.2007.4300983
|
[8] |
HAN D, SOBABE G C, ZHANG C J, et al. Spectrum sensing for cognitive radio based on convolution neural network[C]//2017 10 th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI). Shanghai: IEEE, 2017: 1-6
|
[9] |
THILINA K M, CHOI K W, SAQUIB N, et al. Machine learning techniques for cooperative spectrum sensing in cognitive radio networks[J]. IEEE Journal on Selected Areas in Communications, 2013, 31(11): 2209-2221 doi: 10.1109/JSAC.2013.131120
|
[10] |
TANG Y J, ZHANG Q Y, LIN W. Artificial neural network based spectrum sensing method for cognitive radio[C]//2010 6 th International Conference on Wireless Communications Networking and Mobile Computing (WiCOM). Chengdu: IEEE, 2010: 1-4
|
[11] |
ZHANG M, DIAO M, GUO L M. Convolutional neural networks for automatic cognitive radio waveform recognition[J]. IEEE Access, 2017, 5: 11074-11082 doi: 10.1109/ACCESS.2017.2716191
|
[12] |
WANG J, TANG J, XU Z Y, et al. Spatiotemporal modeling and prediction in cellular networks: a big data enabled deep learning approach[C]//IEEE INFOCOM 2017 - IEEE Conference on Computer Communications. Atlanta: IEEE, 2017: 1-9
|
[13] |
SHAWEL B S, WOLDEGEBREAL D H, POLLIN S. Convolutional LSTM-based long-term spectrum prediction for dynamic spectrum access[C]//2019 27 th European Signal Processing Conference (EUSIPCO). A Coruna: IEEE, 2019: 1-5
|
[14] |
WU T. CNN and RNN-based deep learning methods for digital signal demodulation[C]//Proceedings of the 2019 International Conference on Image, Video and Signal Processing. Shanghai: Association for Computing Machinery, 2019: 122-127
|
[15] |
XIE J D, FANG J, LIU C, et al. Deep learning-based spectrum sensing in cognitive radio: a CNN-LSTM approach[J]. IEEE Communications Letters, 2020, 24(10): 2196-2200 doi: 10.1109/LCOMM.2020.3002073
|
[16] |
GIUFFRIDA G, DIANA L, DE GIOIA F, et al. CloudScout: a deep neural network for on-board cloud detection on hyperspectral images[J]. Remote Sensing, 2020, 12(14): 2205 doi: 10.3390/rs12142205
|
[17] |
LI F L, LI Z Q, LI G X, et al. Efficient wideband spectrum sensing with maximal spectral efficiency for LEO mobile satellite systems[J]. Sensors, 2017, 17(1): 193
|
[18] |
ZHANG C, JIANG C X, JIN J, et al. Spectrum sensing and recognition in satellite systems[J]. IEEE Transactions on Vehicular Technology, 2019, 68(3): 2502-2516 doi: 10.1109/TVT.2019.2893388
|
[19] |
SENGIJPTA S K. Fundamentals of statistical signal processing: estimation theory[J]. Technometrics, 1995, 37(4): 465-466
|
[20] |
ZHENG S L, CHEN S C, QI P H, et al. Spectrum sensing based on deep learning classification for cognitive radios[J]. China Communications, 2020, 17(2): 138-148 doi: 10.23919/JCC.2020.02.012
|
[21] |
SAEED N, ELZANATY A, ALMORAD H, et al. CubeSat communications: recent advances and future challenges[J]. IEEE Communications Surveys & Tutorials, 2020, 22(3): 1839-1862
|
[22] |
O’SHEA T J, WEST N. Radio machine learning dataset generation with GNU radio[C]//Proceedings of the 6 th GNU Radio Conference. Boulder: GRCon, 2016
|