| Citation: | XUE Shixiang, JIANG Chunhua, MA Zhengzheng, XU Bin, DING Guangxing, YANG Guobin, ZHANG Yuannong, ZHAO Zhengyu. A Comparative Study between the Ionospheric f0F2 from Nighttime OI 135.6 nm Emission and Ionosonde Observations (in Chinese). Chinese Journal of Space Science, 2023, 43(3): 456-465 doi: 10.11728/cjss2023.03.2022-0018 |
| [1] |
WANG Houmao, WANG Yongmei. Airglow simulation based on the atmospheric ultraviolet radiance integrated code of 2012[J]. Science China: Earth Sciences, 2016, 59(2): 425-435 doi: 10.1007/s11430-015-5166-7
|
| [2] |
STRICKLAND D J, DONAHUE T M. Excitation and radiative transport of OI 1304 Å resonance radiation—I: The dayglow[J]. Planetary and Space Science, 1970, 18(5): 661-689 doi: 10.1016/0032-0633(70)90049-8
|
| [3] |
STRICKLAND D J, ANDERSON JR D E. Radiation transport effects on the OI 1356‐Å limb intensity profile in the dayglow[J]. Journal of Geophysical Research: Space Physics, 1983, 88(A11): 9260-9264 doi: 10.1029/JA088iA11p09260
|
| [4] |
CHANDRA S, REED E I, MEIER R R, et al. Remote sensing of the ionospheric F layer by use of O I 6300-Å and O I 1356-Å observations[J]. Journal of Geophysical Research, 1975, 80(16): 2327-2332 doi: 10.1029/JA080i016p02327
|
| [5] |
MEIER R R, OPAL C B. Tropical UV arcs: Comparison of brightness with f0F2[J]. Journal of Geophysical Research, 1973, 78(16): 3189-3193 doi: 10.1029/JA078i016p03189
|
| [6] |
MEIER R R. Ultraviolet spectroscopy and remote sensing of the upper atmosphere[J]. Space Science Reviews, 1991, 58(1): 1-185
|
| [7] |
DEMAJISTRE R, PAXTON L J, MORRISON D, et al. Retrievals of nighttime electron density from Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) mission Global Ultraviolet Imager (GUVI) measurements[J]. Journal of Geophysical Research: Space Physics, 2004, 109(A5): A05305
|
| [8] |
PAXTON L J, MENG C I, FOUNTAIN G H, et al. Special sensor ultraviolet spectrographic imager: an instrument description[C]//Proceedings of SPIE 1745, Instrumentation for Planetary and Terrestrial Atmospheric Remote Sensing. San Diego: SPIE, 1992: 2-15
|
| [9] |
CHRISTENSEN A B, PAXTON L J, AVERY S, et al. Initial observations with the Global Ultraviolet Imager (GUVI) in the NASA TIMED satellite mission[J]. Journal of Geophysical Research: Space Physics, 2003, 108(A12): 1451 doi: 10.1029/2003JA009918
|
| [10] |
DYMOND K F, NEE J B, THOMAS R J. The tiny ionospheric photometer: an instrument for measuring ionospheric gradients for the COSMIC constellation[J]. Terrestrial, Atmospheric and Oceanic Sciences, 2000, 11(1): 273-290 doi: 10.3319/TAO.2000.11.1.273(COSMIC)
|
| [11] |
MENDE S B, FREY H U, RIDER K, et al. The far ultra-violet imager on the ICON mission[J]. Space Science Reviews, 2017, 212(1): 655-696
|
| [12] |
JIANG F, MAO T, ZHANG X X, et al. Observation of thermosphere and ionosphere using the ionosphere PhotoMeter (IPM) on the Chinese meteorological satellite FY-3D[J]. Advances in Space Research, 2020, 66(9): 2151-2167 doi: 10.1016/j.asr.2020.07.027
|
| [13] |
STRICKLAND D J, BISHOP J, EVANS J S, et al. Atmospheric Ultraviolet Radiance Integrated Code (AURIC): theory, software architecture, inputs, and selected results[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 1999, 62(6): 689-742 doi: 10.1016/S0022-4073(98)00098-3
|
| [14] |
BISHOP J, FELDMAN P D. Analysis of the astro-1/Hopkins ultraviolet telescope EUV–FUV dayside nadir spectral radiance measurements[J]. Journal of Geophysical Research: Space Physics, 2003, 108(A6): 1243 doi: 10.1029/2001JA000330
|
| [15] |
STEPHAN A W, DYMOND K F, BUDZIEN S A, et al. Middle ultraviolet remote sensing of the equatorial thermosphere during a geomagnetic storm[J]. Annales Geophysicae, 2004, 22(9): 3203-3209 doi: 10.5194/angeo-22-3203-2004
|
| [16] |
EVANS J S, LUMPE J D, CORREIRA J, et al. Extension of the AURIC radiative transfer model for mars atmospheric research[C]//AGU Fall Meeting 2013. Washington: American Geophysical Union, 2013: P21 A-1686
|
| [17] |
江芳, 毛田, 李小银, 等. 利用OI 135.6 nm夜气辉辐射探测电离层峰值电子密度及电子总含量的研究[J]. 地球物理学报, 2014, 57(11): 3679-3687
JIANG Fang, MAO Tian, LI Xiaoyin, et al. The research on NmF2 and TEC derived from nighttime OI 135.6 nm emission measurement[J]. Chinese Journal of Geophysics, 2014, 57(11): 3679-3687
|
| [18] |
DING G X, CHEN B, ZHANG X X, et al. A method to derive global O/N2 ratios from SSUSI/DMSP based on Re-AURIC algorithm[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2020, 199: 105196 doi: 10.1016/j.jastp.2020.105196
|
| [19] |
QIN J Q, MAKELA J J, KAMALABADI F, et al. Radiative transfer modeling of the OI 135.6 nm emission in the nighttime ionosphere[J]. Journal of Geophysical Research: Space Physics, 2015, 120(11): 10116-10135 doi: 10.1002/2015JA021687
|
| [20] |
BRUNE W H, FELDMAN P D, ANDERSON R C, et al. Midlatitude oxygen ultraviolet nightglow[J]. Geophysical Research Letters, 1978, 5(5): 383-386 doi: 10.1029/GL005i005p00383
|
| [21] |
DYMOND K F, THONNARD S E, MCCOY R P, et al. An optical remote sensing technique for determining nighttime F region electron density[J]. Radio Science, 1997, 32(5): 1985-1996 doi: 10.1029/97RS01887
|
| [22] |
DYMOND K F, NICHOLAS A C, BUDZIEN S A, et al. A comparison of electron densities derived by tomographic inversion of the 135.6-nm ionospheric nightglow emission to incoherent scatter radar measurements[J]. Journal of Geophysical Research: Space Physics, 2019, 124(6): 4585-4596 doi: 10.1029/2018JA026412
|
| [23] |
CHAMBERLAIN J W, HUNTEN D W. Theory of Planetary Atmospheres: An Introduction to Their Physics and Chemistry [M]. New York: Academic Press Inc. , 1987
|
| [24] |
BILITZA D, ALTADILL D, TRUHLIK V, et al. International reference ionosphere 2016: from ionospheric climate to real-time weather predictions[J]. Space Weather, 2017, 15(2): 418-429 doi: 10.1002/2016SW001593
|
| [25] |
PICONE J M, HEDIN A E, DROB D P, et al. NRLMSISE-00 empirical model of the atmosphere: statistical comparisons and scientific issues[J]. Journal of Geophysical Research: Space Physics, 2002, 107(A12): 1468
|
| [26] |
RAJESH P K, LIU J Y, HSU M L, et al. Ionospheric electron content and NmF2 from nighttime OI 135.6 nm intensity[J]. Journal of Geophysical Research: Space Physics, 2011, 116(A2): A02313
|
| [27] |
QIN J Q. Far ultraviolet remote sensing of the nighttime ionosphere using the OI 130.4-nm emission[J]. Journal of Geophysical Research: Space Physics, 2020, 125(6): e2020JA028049
|
| [28] |
GUO B, XU J Y, SUN L C, et al. The seasonal and longitudinal variations of nighttime OI 135.6-nm emission at equatorial ionization anomaly crests observed by the DMSP/SSUSI[J]. Journal of Geophysical Research: Space Physics, 2020, 125(9): e2019JA027764
|
| [29] |
TSAI T C, JHUANG H K, LEE L C, et al. Ionospheric peaked structures and their local time, seasonal, and solar activity dependence based on global ionosphere maps[J]. Journal of Geophysical Research: Space Physics, 2019, 124(10): 7994-8014 doi: 10.1029/2019JA026899
|
| [30] |
SHEPHERD S G. Altitude-adjusted corrected geomagnetic coordinates: definition and functional approximations[J]. Journal of Geophysical Research: Space Physics, 2014, 119(9): 7501-7521 doi: 10.1002/2014JA020264
|