Citation: | XIAO Hui, TIAN Xinqin. Modeling of Auroral Electrojet Index with Ultraviolet Aurora Image (in Chinese). Chinese Journal of Space Science, 2023, 43(3): 434-445 doi: 10.11728/cjss2023.03.2022-0033 |
[1] |
DAVIS T N, SUGIURA M. Auroral electrojet activity index AE and its universal time variations[J]. Journal of Geophysical Research, 1966, 71(3): 785-801 doi: 10.1029/jz071i003p00785
|
[2] |
BARGATZE L F, BAKER D N, MCPHERRON R L, et al. Magnetospheric impulse response for many levels of geomagnetic activity[J]. Journal of Geophysical Research: Space Physics, 1985, 90(A7): 6387-6394 doi: 10.1029/ja090ia07p06387
|
[3] |
KLIMAS A J, VASSILIADIS D, BAKER D N. Data-derived analogues of the magnetospheric dynamics[J]. Journal of Geophysical Research: Space Physics, 1997, 102(A12): 26993-27009 doi: 10.1029/97JA02414
|
[4] |
WEIGEL R S, HORTON W, TAJIMA T, et al. Forecasting auroral electrojet activity from solar wind input with neural networks[J]. Geophysical Research Letters, 1999, 26(10): 1353-1356 doi: 10.1029/1999GL900280
|
[5] |
郑志超, 张科灯, 万欣, 等. 基于神经网络的磁平静期赤道电集流预测[J]. 空间科学学报, 2021, 41(3): 392-401 doi: 10.11728/cjss2021.03.392
ZHENG Zhichao, ZHANG Kedeng, WAN Xin, et al. Prediction of equatorial electrojet based on the neural network during quiet time[J]. Chinese Journal of Space Science, 2021, 41(3): 392-401 doi: 10.11728/cjss2021.03.392
|
[6] |
FERREIRA A A, BORGES R A. Performance analysis of distinct feed-forward neural networks structures on the AE index prediction[C]// IEEE Aerospace Conference. Big Sky: IEEE, 2021: 1-7. DOI: 10.1109/AERO50100.2021.9438504
|
[7] |
CAI L, MA S Y, ZHOU Y L. Prediction of SYM-H index during large storms by NARX neural network from IMF and solar wind data[J]. Annales Geophysicae, 2010, 28(2): 381-393 doi: 10.5194/angeo-28-381-2010
|
[8] |
AMARIUTEI O A, GANUSHKINA N Y. On the prediction of the auroral westward electrojet index[J]. Annales Geophysicae, 2012, 30(5): 841-847 doi: 10.5194/angeo-30-841-2012
|
[9] |
邹自明, 曹晋滨, 李毅. 太阳风扰动对极光电急流和环电流指数的影响[J]. 空间科学学报, 2012, 32(1): 14-19 doi: 10.11728/cjss2012.01.014
ZOU Ziming, CAO Jinbin, LI Yi. Influence of solar wind disturbance on ring current and auroral electrojet indexes[J]. Chinese Journal of Space Science, 2012, 32(1): 14-19 doi: 10.11728/cjss2012.01.014
|
[10] |
GOPINATH S, PRINCE P R. A comparison of machine-learning techniques for the prediction of the auroral electrojet index[J]. Journal of Earth System Science, 2019, 128(7): 172 doi: 10.1007/s12040-019-1194-6
|
[11] |
MANSHOUR P, BALASIS G, CONSOLINI G, et al. Causality and information transfer between the solar wind and the magnetosphere–ionosphere system[J]. Entropy, 2021, 23(4): 390 doi: 10.3390/e23040390
|
[12] |
NEWELL P T, LIOU K, SOTIRELIS T, et al. Polar ultraviolet imager observations of global auroral power as a function of polar cap size and magnetotail stretching[J]. Journal of Geophysical Research: Space Physics, 2001, 106(A4): 5895-5905 doi: 10.1029/2000ja003034
|
[13] |
LIOU K, CARBARY J F, NEWELL P T, et al. Correlation of auroral power with the polar cap index[J]. Journal of Geophysical Research: Space Physics, 2003, 108(A3): 1108 doi: 10.1029/2002JA009556
|
[14] |
CHEN A Q, LI J W, YANG G L, et al. Calculating auroral oval pattern by AE index[J]. Acta Meteorologica Sinica, 2008, 22(1): 91-96
|
[15] |
MILAN S E. Both solar wind-magnetosphere coupling and ring current intensity control of the size of the auroral oval[J]. Geophysical Research Letters, 2009, 36(18): L18101 doi: 10.1029/2009GL039997
|
[16] |
杨秋菊, 胡泽骏, 韩德胜, 等. 基于行星际/太阳风和地磁条件的紫外极光卵边界建模和预测[J]. 地球物理学报, 2016, 59(2): 426-439 doi: 10.6038/cjg20160203
YANG Qiuju, HU Zejun, HAN Desheng, et al. Modeling and prediction of ultraviolet auroral oval boundaries based on IMF/solar wind and geomagnetic parameters[J]. Chinese Journal of Geophysics, 2016, 59(2): 426-439 doi: 10.6038/cjg20160203
|
[17] |
HAN Y Y, HAN B, HU Z J, et al. Prediction and variation of the auroral oval boundary based on a deep learning model and space physical parameters[J]. Nonlinear Processes in Geophysics, 2020, 27(1): 11-22 doi: 10.5194/npg-27-11-2020
|
[18] |
韩冰, 连慧芳, 胡泽骏. 基于神经网络模型的紫外极光卵边界建模[J]. 中国科学: 技术科学, 2019, 49(5): 531-542 doi: 10.1360/N092018-00227
HAN Bing, LIAN Huifang, HU Zejun. Modeling of ultraviolet auroral oval boundaries based on neural network technology[J]. SCIENTIA SINICA Technologica, 2019, 49(5): 531-542 doi: 10.1360/N092018-00227
|
[19] |
胡泽骏, 韩冰, 连慧芳. 基于广义回归神经网络的行星际/太阳风参数和地磁指数的紫外极光强度建模[J]. 地球物理学报, 2020, 63(5): 1738-1750 doi: 10.6038/cjg2020N0151
HU Zejun, HAN Bing, LIAN Huifang. Modeling of ultraviolet auroral intensity based on Generalized Regression Neural Network associated with IMF/solar wind and geomagnetic parameters[J]. Chinese Journal of Geophysics, 2020, 63(5): 1738-1750 doi: 10.6038/cjg2020N0151
|
[20] |
HU Z J, HAN B, ZHANG Y S, et al. Modeling of ultraviolet aurora intensity associated with interplanetary and geomagnetic parameters based on neural networks[J]. Space Weather, 2021, 19(11): e2021SW002751 doi: 10.1029/2021SW002751
|
[21] |
NEWELL P T, LIOU K, SOTIRELIS T, et al. Auroral precipitation power during substorms: a Polar UV Imager-based superposed epoch analysis[J]. Journal of Geophysical Research: Space Physics, 2001, 106(A12): 28885-28896 doi: 10.1029/2000ja000428
|
[22] |
GERMANY G A, TOOR M R, TOOR D G, et al. Use of FUV auroral emissions as diagnostic indicators[J]. Journal of Geophysical Research, 1994, 99(A1): 383-388 doi: 10.1029/93JA02357
|
[23] |
CLIVER E W, KAMIDE Y, LING A G. Mountains versus valleys: semiannual variation of geomagnetic activity[J]. Journal of Geophysical Research: Space Physics, 2000, 105(A2): 2413-2424 doi: 10.1029/1999ja900439
|
[24] |
SINGH A K, RAWAT R, PATHAN B M. On the UT and seasonal variations of the standard and SuperMAG auroral electrojet indices[J]. Journal of Geophysical Research: Space Physics, 2013, 118(8): 5059-5067 doi: 10.1002/jgra.50488
|
[25] |
万秉东, 李敏, 王源, 等. 极光电集流纬度变化特征初步分析[J]. 地球物理学进展, 2013, 28(4): 1655-1661 doi: 10.6038/pg20130403
WAN Bingdong, LI Min, WANG Yuan, et al. A preliminary analysis of the center latitude distribution of auroral electrojet[J]. Progress in Geophysics, 2013, 28(4): 1655-1661 doi: 10.6038/pg20130403
|
[26] |
王秋军, 杜爱民, 赵旭东, 等. 1998年8月6日亚暴期间极光电集流指数AE的特征分析[J]. 地球物理学报, 2009, 52(12): 2943-2950 doi: 10.3969/j.issn.0001-5733.2009.12.002
WANG Qiujun, DU Aimin, ZHAO Xudong, et al. Manifestation of the AE index in substorms on August 6, 1998[J]. Chinese Journal of Geophysics, 2009, 52(12): 2943-2950 doi: 10.3969/j.issn.0001-5733.2009.12.002
|
[27] |
徐文耀. 亚暴期间极光电集流带的变化[J]. 地球物理学报, 2009, 52(3): 607-615
XU Wenyao. Variations of the auroral electrojet belt during substorms[J]. Chinese Journal of Geophysics, 2009, 52(3): 607-615
|
[28] |
SPECHT D F. A general regression neural network[J]. IEEE Transactions on Neural Networks, 1991, 2(6): 568-576 doi: 10.1109/72.97934
|
[29] |
NEWELL P T, GJERLOEV J W. Evaluation of SuperMAG auroral electrojet indices as indicators of substorms and auroral power[J]. Journal of Geophysical Research: Space Physics, 2011, 116(A12): A12211 doi: 10.1029/2011JA016779
|
[30] |
NEWELL P T, GJERLOEV J W. Substorm and magnetosphere characteristic scales inferred from the SuperMAG auroral electrojet indices[J]. Journal of Geophysical Research: Space Physics, 2011, 116(A12): A12232 doi: 10.1029/2011JA016936
|
[31] |
PALLOCCHIA G, AMATA E, CONSOLINI G, et al. AE index forecast at different time scales through an ANN algorithm based on L1 IMF and plasma measurements[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2008, 70(2/3/4): 663-668 doi: 10.1016/j.jastp.2007.08.038
|