| Citation: | WANG Shuangfeng, WU Chuanjia. Recent Progress and Development Trend of Solid Combustion Research for Manned Space Exploration (in Chinese). Chinese Journal of Space Science, 2023, 43(3): 531-548 doi: 10.11728/cjss2023.03.2022-0049 |
| [1] |
LAUTENBERGER C, TORERO J, FERNANDEZ-PELLO C. Understanding material flammability[M]//APTE V. Flammability Testing of Materials Used in Construction, Transport and Mining. Boca Raton: CRC Press, 2006: 1-21
|
| [2] |
QUINTIERE J. A simplified theory for generalizing results from a radiant panel rate of flame spread apparatus[J]. Fire and Materials, 1981, 5(2): 52-60 doi: 10.1002/fam.810050204
|
| [3] |
TORERO J L. Scaling-up fire[J]. Proceedings of the Combustion Institute, 2013, 34(1): 99-124 doi: 10.1016/j.proci.2012.09.007
|
| [4] |
CORDOVA J L, WALTHER D C, TORERO J L, et al. Oxidizer flow effects on the flammability of solid combustibles[J]. Combustion Science and Technology, 2001, 164(1): 253-278 doi: 10.1080/00102200108952172
|
| [5] |
RICH D, LAUTENBERGER C, TORERO J L, et al. Mass flux of combustible solids at piloted ignition[J]. Proceedings of the Combustion Institute, 2007, 31(2): 2653-2660 doi: 10.1016/j.proci.2006.08.055
|
| [6] |
FERERES S, LAUTENBERGER C, FERNANDEZ-PELLO C, et al. Mass flux at ignition in reduced pressure environments[J]. Combustion and Flame, 2011, 158(7): 1301-1306 doi: 10.1016/j.combustflame.2010.11.013
|
| [7] |
MCALLISTER S, FERNANDEZ-PELLO C, URBAN D, et al. The combined effect of pressure and oxygen concentration on piloted ignition of a solid combustible[J]. Combustion and Flame, 2010, 157(9): 1753-1759 doi: 10.1016/j.combustflame.2010.02.022
|
| [8] |
MCALLISTER S, FERNANDEZ-PELLO C, URBAN D, et al. Piloted ignition delay of PMMA in space exploration atmospheres[J]. Proceedings of the Combustion Institute, 2009, 32(2): 2453-2459 doi: 10.1016/j.proci.2008.05.076
|
| [9] |
FRIEDMAN R, ROSS H D. Combustion technology and fire safety for humancrew space missions[M]//ROSS H D. Microgravity Combustion: Fire in Free Fall. New York: Academic Press, 2001: 525-562
|
| [10] |
LANGE K E, PERKA A T, DUFFIELD B E, et al. Bounding the spacecraft atmosphere design space for future exploration missions[R]. Houston: NASA, 2005
|
| [11] |
CAMPBELL P D. Recommendations for exploration spacecraft internal atmospheres: the final report of the NASA exploration atmospheres working group[R]. Houston: NASA, 2010
|
| [12] |
刘伟波, 刘朝霞, 陈金盾, 等. 载人探月航天器大气压力制度选择[J]. 载人航天, 2016, 22(6): 687-693 doi: 10.3969/j.issn.1674-5825.2016.06.004
LIU Weibo, LIU Zhaoxia, CHEN Jindun, et al. Selection of spacecraft atmospheric pressure regime for manned lunar exploration mission[J]. Manned Spaceflight, 2016, 22(6): 687-693 doi: 10.3969/j.issn.1674-5825.2016.06.004
|
| [13] |
T'IEN J S, SHIH H Y, JIANG C B, et al. Mechanisms of flame spread and smolder wave propagation[M]//ROSS H D. Microgravity Combustion: Fire in Free Fall. San Diego: Academic Press, 2001: 299-418
|
| [14] |
张夏. 载人航天器火灾安全研究进展[J]. 力学进展, 2005, 35(1): 100-115 doi: 10.3321/j.issn:1000-0992.2005.01.010
ZHANG Xia. Progress in fire safety research for manned spacecraft[J]. Advances in Mechanics, 2005, 35(1): 100-115 doi: 10.3321/j.issn:1000-0992.2005.01.010
|
| [15] |
FUJITA O. Solid combustion research in microgravity as a basis of fire safety in space[J]. Proceedings of the Combustion Institute, 2015, 35(3): 2487-2502 doi: 10.1016/j.proci.2014.08.010
|
| [16] |
薛源, 徐国鑫, 胡松林, 等. 国际空间站微重力燃烧项目规划及进展[J]. 载人航天, 2020, 26(2): 252-260 doi: 10.3969/j.issn.1674-5825.2020.02.017
XUE Yuan, XU Guoxin, HU Songlin, et al. Planning and progress of microgravity combustion science on the International Space Station[J]. Manned Spaceflight, 2020, 26(2): 252-260 doi: 10.3969/j.issn.1674-5825.2020.02.017
|
| [17] |
张璐, 刘迎春. 空间站微重力燃烧研究现状与展望[J]. 载人航天, 2015, 21(6): 603-610 doi: 10.3969/j.issn.1674-5825.2015.06.012
ZHANG Lu, LIU Yingchun. Research status and outlook of microgravity combustion in space station[J]. Manned Spaceflight, 2015, 21(6): 603-610 doi: 10.3969/j.issn.1674-5825.2015.06.012
|
| [18] |
NASA. Smoke aerosol measurement experiment (SAME)[EB/OL]. [2022-12-23]. https://www1.grc.nasa.gov/space/iss-research/msg/same/#space-applications
|
| [19] |
MEYER M E, URBAN D L, MULHOLLAND G W, et al. Evaluation of spacecraft smoke detector performance in the low-gravity environment[J]. Fire Safety Journal, 2018, 98: 74-81 doi: 10.1016/j.firesaf.2018.04.004
|
| [20] |
MULHOLLAND G W, MEYER M, URBAN D L, et al. Pyrolysis smoke generated under low-gravity conditions[J]. Aerosol Science and Technology, 2015, 49(5): 310-321 doi: 10.1080/02786826.2015.1025125
|
| [21] |
URBAN D L, RUFF G A, MULHOLLAND G W, et al. Measurement of smoke particle size under low-gravity conditions[J]. SAE International Journal of Aerospace, 2008, 1(1): 317-324 doi: 10.4271/2008-01-2089
|
| [22] |
URBAN D, RUFF G, SHEREDY W, et al. Properties of smoke from overheated materials in low-gravity[C]//Proceedings of the 47 th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition. Orlando: AIAA, 2009: 1-7
|
| [23] |
MEYER M E, MULHOLLAND G W, BRYG V, et al. Smoke characterization and feasibility of the moment method for spacecraft fire detection[J]. Aerosol Science and Technology, 2015, 49(5): 299-309 doi: 10.1080/02786826.2015.1025124
|
| [24] |
URBAN D, RUFF G, BROOKER J, et al. Spacecraft fire detection: smoke properties and transport in low-gravity[C]//Proceedings of the 46 th AIAA Aerospace Sciences Meeting and Exhibit. Reno: AIAA, 2008: 1-9
|
| [25] |
ZHAO X Y, LIAO Y T T, JOHNSTON M C, et al. Concurrent flame growth, spread, and quenching over composite fabric samples in low speed purely forced flow in microgravity[J]. Proceedings of the Combustion Institute, 2017, 36(2): 2971-2978 doi: 10.1016/j.proci.2016.06.028
|
| [26] |
BHATTACHARJEE S, SIMSEK A, MILLER F, et al. Radiative, thermal, and kinetic regimes of opposed-flow flame spread: a comparison between experiment and theory[J]. Proceedings of the Combustion Institute, 2017, 36(2): 2963-2969 doi: 10.1016/j.proci.2016.06.025
|
| [27] |
BHATTACHARJEE S, LAUE M, CARMIGNANI L, et al. Opposed-flow flame spread: a comparison of microgravity and normal gravity experiments to establish the thermal regime[J]. Fire Safety Journal, 2016, 79: 111-118 doi: 10.1016/j.firesaf.2015.11.011
|
| [28] |
BHATTACHARJEE S, SIMSEK A, OLSON S, et al. The critical flow velocity for radiative extinction in opposed-flow flame spread in a microgravity environment: a comparison of experimental, computational, and theoretical results[J]. Combustion and Flame, 2016, 163: 472-477 doi: 10.1016/j.combustflame.2015.10.023
|
| [29] |
CARMIGNANI L, BHATTACHARJEE S, OLSON S L, et al. Boundary layer effect on opposed-flow flame spread and flame length over thin polymethyl-methacrylate in microgravity[J]. Combustion Science and Technology, 2018, 190(3): 535-549 doi: 10.1080/00102202.2017.1404587
|
| [30] |
ENDO M, T’IEN J S, FERKUL P V, et al. Flame growth around a spherical solid fuel in low speed forced flow in microgravity[J]. Fire Technology, 2020, 56(1): 5-32 doi: 10.1007/s10694-019-00848-2
|
| [31] |
OLSON S L, FERKUL P V, MARCUM J W. High-speed video analysis of flame oscillations along a PMMA rod after stagnation region blowoff[J]. Proceedings of the Combustion Institute, 2019, 37(2): 1555-1562 doi: 10.1016/j.proci.2018.05.080
|
| [32] |
MARCUM J W, FERKUL P V, OLSON S L. PMMA rod stagnation region flame blowoff limits at various radii, oxygen concentrations, and mixed stretch rates[J]. Proceedings of the Combustion Institute, 2019, 37(3): 4001-4008 doi: 10.1016/j.proci.2018.05.081
|
| [33] |
LINK S, HUANG X Y, FERNANDEZ-PELLO C, et al. The effect of gravity on flame spread over PMMA cylinders[J]. Scientific Reports, 2018, 8(1): 120 doi: 10.1038/s41598-017-18398-4
|
| [34] |
HUANG X Y, LINK S, RODRIGUEZ A, et al. Transition from opposed flame spread to fuel regression and blow off: effect of flow, atmosphere, and microgravity[J]. Proceedings of the Combustion Institute, 2019, 37(3): 4117-4126 doi: 10.1016/j.proci.2018.06.022
|
| [35] |
NASA. Advanced combustion via microgravity experiments (ACME)[EB/OL]. [2022-12-23]. https://www1.grc.nasa.gov/space/iss-research/iss-fcf/cir/acme
|
| [36] |
DEHGHANI P, SUNDERLAND P B, QUINTIERE J G, et al. Burning in microgravity: experimental results and analysis[J]. Combustion and Flame, 2021, 228: 315-330 doi: 10.1016/j.combustflame.2021.01.035
|
| [37] |
LUNDSTRÖM F V, SUNDERLAND P B, QUINTIERE J G, et al. Study of ignition and extinction of small-scale fires in experiments with an emulating gas burner[J]. Fire Safety Journal, 2017, 87: 18-24 doi: 10.1016/j.firesaf.2016.11.003
|
| [38] |
AUTH E, QUINTIERE J G, SUNDERLAND P B. Emulation of condensed fuel flames with gaseous fuels supplied through a porous copper calorimeter[J]. Fire and Materials, 2020, 44(7): 935-942 doi: 10.1002/fam.2896
|
| [39] |
ZHANG Y, KIM M, SUNDERLAND P B, et al. A burner to emulate condensed phase fuels[J]. Experimental Thermal and Fluid Science, 2016, 73: 87-93 doi: 10.1016/j.expthermflusci.2015.09.025
|
| [40] |
MARKAN A, SUNDERLAND P B, QUINTIERE J G, et al. A burning rate emulator (BRE) for study of condensed fuel burning in microgravity[J]. Combustion and Flame, 2018, 192: 272-282 doi: 10.1016/j.combustflame.2018.01.044
|
| [41] |
ZHANG Y, KIM M, GUO H Q, et al. Emulation of condensed fuel flames with gases in microgravity[J]. Combustion and Flame, 2015, 162(10): 3449-3455 doi: 10.1016/j.combustflame.2015.05.005
|
| [42] |
MARKAN A, SUNDERLAND P B, QUINTIERE J G, et al. Measuring heat flux to a porous burner in microgravity[J]. Proceedings of the Combustion Institute, 2019, 37(3): 4137-4144 doi: 10.1016/j.proci.2018.05.006
|
| [43] |
SNEGIREV A, KUZNETSOV E, MARKUS E, et al. Transient dynamics of radiative extinction in low-momentum microgravity diffusion flames[J]. Proceedings of the Combustion Institute, 2021, 38(3): 4815-4823 doi: 10.1016/j.proci.2020.06.110
|
| [44] |
KUZNETSOV E, SNEGIREV A, MARKUS E. Radiative extinction of diffusion flame in microgravity[C]//Proceedings of the 9 th International Seminar on Fire and Explosion Hazards. Saint Petersburg: St. Petersburg Polytechnic University, 2019: 214-224
|
| [45] |
DEHGHANI P, QUINTIERE J G. Theoretical analysis and predictions of burning in microgravity using a burning emulator[J]. Combustion and Flame, 2021, 233: 111572 doi: 10.1016/j.combustflame.2021.111572
|
| [46] |
MARKAN A, BAUM H R, SUNDERLAND P B, et al. Transient ellipsoidal combustion model for a porous burner in microgravity[J]. Combustion and Flame, 2020, 212: 93-106 doi: 10.1016/j.combustflame.2019.09.030
|
| [47] |
NASA. Solid fuel ignition and extinction[EB/OL]. [2022-12-23]. https://www.nasa.gov/mission_pages/station/research/experiments/explorer/Facility.html?#id=2060
|
| [48] |
NASA. Fighting fire with fire: new space station experiments study flames in space[EB/OL]. [2022-12-23]. https://www.nasa.gov/feature/glenn/2022/fighting-fire-with-fire-new-space-station-experiments-study-flames-in-space
|
| [49] |
NASA. Spacecraft fire safety (Saffire)[EB/OL]. [2022-12-23]. https://www.nasa.gov/saffire
|
| [50] |
NASA. Spacecraft fire safety demonstration (Saffire)[EB/OL]. [2022-12-23]. https://techport.nasa.gov/view/13543
|
| [51] |
URBAN D L, FERKUL P, OLSON S, et al. Flame spread: effects of microgravity and scale[J]. Combustion and Flame, 2019, 199: 168-182 doi: 10.1016/j.combustflame.2018.10.012
|
| [52] |
JOMAAS G, TORERO J L, EIGENBROD C, et al. Fire safety in space–beyond flammability testing of small samples[J]. Acta Astronautica, 2015, 109: 208-216 doi: 10.1016/j.actaastro.2014.11.025
|
| [53] |
FERKUL P, OLSON S, URBAN D, et al. Results of large-scale spacecraft flammability tests[C]//Proceedings of the 47 th International Conference on Environmental Systems. Charleston: ICES, 2017: 1-10
|
| [54] |
BROYAN JR J L, SHAW L, MCKINLEY M, et al. NASA environmental control and life support technology development for exploration: 2020 to 2021 overview[C]//Proceedings of the 50 th International Conference on Environmental Systems. Lisbon: ICES, 2021: 1-10
|
| [55] |
CASTEEL M, GRAF J. Development of a carbon dioxide removal bed and a combustion products removal bed for Saffire[C]//Proceedings of the 49 th International Conference on Environmental Systems. Massachusetts: ICES, 2019: 1-10
|
| [56] |
FRADET M, BRIGGS R, BENDIG R. The combustion product monitor instrument for the spacecraft fire safety demonstration project[C]//Proceedings of the 49 th International Conference on Environmental Systems. Massachusetts: ICES, 2019: 1-10
|
| [57] |
WANG X L, ZHOU H, ARNOTT W P, et al. Evaluation of gas and particle sensors for detecting spacecraft-relevant fire emissions[J]. Fire Safety Journal, 2020, 113: 102977 doi: 10.1016/j.firesaf.2020.102977
|
| [58] |
LI C Y, LIAO Y T T, T'IEN J S, et al. Transient flame growth and spread processes over a large solid fabric in concurrent low-speed flows in microgravity–model versus experiment[J]. Proceedings of the Combustion Institute, 2019, 37(3): 4163-4171 doi: 10.1016/j.proci.2018.05.168
|
| [59] |
LI C Y, LIAO Y T T. Effects of ambient conditions on concurrent-flow flame spread over a wide thin solid in microgravity[J]. Proceedings of the Combustion Institute, 2021, 38(3): 4775-4784 doi: 10.1016/j.proci.2020.05.011
|
| [60] |
OLSON S L, URBAN D L, RUFF G A, et al. Concurrent flame spread over two-sided thick PMMA slabs in microgravity[J]. Fire Technology, 2020, 56(1): 49-69 doi: 10.1007/s10694-019-00863-3
|
| [61] |
ROJAS-ALVA U, MØLLER-POULSEN F, MAN S L, et al. Flame spread behaviour of polydimethylsiloxane (PDMS) membranes in 1 g and µg environments[J]. Combustion and Flame, 2022, 240: 112009 doi: 10.1016/j.combustflame.2022.112009
|
| [62] |
THOMSEN M, FERNANDEZ-PELLO C, URBAN D L, et al. On simulating concurrent flame spread in reduced gravity by reducing ambient pressure[J]. Proceedings of the Combustion Institute, 2019, 37(3): 3793-3800 doi: 10.1016/j.proci.2018.05.004
|
| [63] |
THOMSEN M, FERNANDEZ-PELLO C, RUFF G A, et al. Buoyancy effects on concurrent flame spread over thick PMMA[J]. Combustion and Flame, 2019, 199: 279-291 doi: 10.1016/j.combustflame.2018.10.016
|
| [64] |
NASA. Flammability limits at reduced-g experiment (FLARE)[EB/OL]. [2022-12-23]. https://www1.grc.nasa.gov/space/iss-research/iss-fcf/cir/flammability-limits-at-reduced-g-experiment-flare
|
| [65] |
TAKAHASHI S, MARUTA K. Prediction of limiting oxygen concentration of thin materials in microgravity[J]. Transactions of the Japan Society for Aeronautical and Space Sciences, Aerospace Technology Japan, 2018, 16(1): 28-34 doi: 10.2322/tastj.16.28
|
| [66] |
GUIBAUD A, CITERNE J M, CONSALVI J L, et al. Experimental evaluation of flame radiative feedback: methodology and application to opposed flame spread over coated wires in microgravity[J]. Fire Technology, 2020, 56: 185-207 doi: 10.1007/s10694-019-00853-5
|
| [67] |
KOBAYASHI Y, TERASHIMA K, BIN BORHAN M A F, et al. Opposed flame spread over polyethylene under variable flow velocity and oxygen concentration in microgravity[J]. Fire Technology, 2020, 56(1): 113-130 doi: 10.1007/s10694-019-00862-4
|
| [68] |
MIZUTANI K, MIYAMOTO K, HASHIMOTO N, et al. Limiting oxygen concentration trend of ETFE-insulated wires under microgravity[J]. International Journal of Microgravity Science and Application, 2018, 35(1): 350104
|
| [69] |
CITERNE J M, DUTILLEUL H, KIZAWA K, et al. Fire safety in space–investigating flame spread interaction over wires[J]. Acta Astronautica, 2016, 126: 500-509 doi: 10.1016/j.actaastro.2015.12.021
|
| [70] |
NAGACHI M, MITSUI F, CITERNE J M, et al. Can a spreading flame over electric wire insulation in concurrent flow achieve steady propagation in microgravity?[J]. Proceedings of the Combustion Institute, 2019, 37(3): 4155-4162 doi: 10.1016/j.proci.2018.05.007
|
| [71] |
TAKAHASHI S, TERASHIMA K, BIN BORHAN M A F, et al. Relationship between blow-off behavior and limiting oxygen concentration in microgravity environments of flame retardant materials[J]. Fire Technology, 2020, 56(1): 169-183 doi: 10.1007/s10694-019-00880-2
|
| [72] |
TAKAHASHI S, BIN BORHAN M A F, TERASHIMA K, et al. Flammability limit of thin flame retardant materials in microgravity environments[J]. Proceedings of the Combustion Institute, 2019, 37(3): 4257-4265 doi: 10.1016/j.proci.2018.06.102
|
| [73] |
TAKAHASHI S, EBISAWA T, BHATTACHARJEE S, et al. Simplified model for predicting difference between flammability limits of a thin material in normal gravity and microgravity environments[J]. Proceedings of the Combustion Institute, 2015, 35(3): 2535-2543 doi: 10.1016/j.proci.2014.07.017
|
| [74] |
TAKAHASHI S, OIWA R, TOKORO M, et al. Flammability limits of flat materials with moderate thickness in microgravity[J]. Fire Technology, 2021, 57(5): 2387-2406 doi: 10.1007/s10694-021-01121-1
|
| [75] |
MARUTA K, TSUBOI K, TAKAHASHI S. Limiting oxygen concentration of flame resistant material in microgravity environment[J]. International Journal of Microgravity Science and Application, 2017, 34(3): 340304
|
| [76] |
NAGACHI M, MITSUI F, CITERNE J M, et al. Effect of ignition condition on the extinction limit for opposed flame spread over electrical wires in microgravity[J]. Fire Technology, 2020, 56(1): 149-168 doi: 10.1007/s10694-019-00860-6
|
| [77] |
KONNO Y, KOBAYASHI Y, FERNANDEZ-PELLO C, et al. Opposed-flow flame spread and extinction in electric wires: the effects of gravity, external radiant heat flux, and wire characteristics on wire flammability[J]. Fire Technology, 2020, 56(1): 131-148 doi: 10.1007/s10694-019-00935-4
|
| [78] |
KONNO Y, LI Y T, CITERNE J M, et al. Experimental study on downward/opposed flame spread and extinction over electric wires in partial gravity environments[J]. Proceedings of the Combustion Institute, doi: 10.1016/j.proci.2022.07.002.
|
| [79] |
NAGACHI M, CITERNE J M, DUTILLEUL H, et al. Effect of ambient pressure on the extinction limit for opposed flame spread over an electrical wire in microgravity[J]. Proceedings of the Combustion Institute, 2021, 38(3): 4767-4774 doi: 10.1016/j.proci.2020.05.005
|
| [80] |
KOBAYASHI Y, HUANG X Y, NAKAYA S, et al. Flame spread over horizontal and vertical wires: the role of dripping and core[J]. Fire Safety Journal, 2017, 91: 112-122 doi: 10.1016/j.firesaf.2017.03.047
|
| [81] |
MIYAMOTO K, HUANG X Y, HASHIMOTO N, et al. Limiting oxygen concentration (LOC) of burning polyethylene insulated wires under external radiation[J]. Fire Safety Journal, 2016, 86: 32-40 doi: 10.1016/j.firesaf.2016.09.004
|
| [82] |
NAKAMURA Y, KIZAWA K, MIZUGUCHI S, et al. Experimental study on near-limiting burning behavior of thermoplastic materials with various thicknesses under candle-like burning configuration[J]. Fire Technology, 2016, 52(4): 1107-1131 doi: 10.1007/s10694-016-0567-5
|
| [83] |
KONNO Y, HASHIMOTO N, FUJITA O. Downward flame spreading over electric wire under various oxygen concentrations[J]. Proceedings of the Combustion Institute, 2019, 37(3): 3817-3824 doi: 10.1016/j.proci.2018.05.074
|
| [84] |
KOBAYASHI Y, NAKAYA S, TSUE M, et al. Flame spread over polyethylene-insulated copper and stainless-steel wires at high pressure[J]. Fire Safety Journal, 2021, 120: 103062 doi: 10.1016/j.firesaf.2020.103062
|
| [85] |
赵建福, 王双峰, 刘强, 等. 中国微重力科学研究回顾与展望[J]. 空间科学学报, 2021, 41(1): 34-45 doi: 10.11728/cjss2021.01.034
ZHAO Jianfu, WANG Shuangfeng, LIU Qiang, et al. Retrospect and perspective on microgravity science in China[J]. Chinese Journal of Space Science, 2021, 41(1): 34-45 doi: 10.11728/cjss2021.01.034
|
| [86] |
WANG S F, ZHANG X. Microgravity smoldering combustion of flexible polyurethane foam with central ignition[J]. Microgravity Science and Technology, 2008, 20(2): 99-105 doi: 10.1007/s12217-008-9014-7
|
| [87] |
KONG W J, WANG B R, ZHANG W K, et al. Study on prefire phenomena of wire insulation at microgravity[J]. Microgravity Science and Technology, 2008, 20(2): 107-113 doi: 10.1007/s12217-008-9041-4
|
| [88] |
ZHU F, LU Z B, WANG S F, et al. Microgravity diffusion flame spread over a thick solid in step-changed low-velocity opposed flows[J]. Combustion and Flame, 2019, 205: 55-67 doi: 10.1016/j.combustflame.2019.03.040
|
| [89] |
WU C J, HUANG X Y, WANG S F, et al. Opposed flame spread over cylindrical PMMA under oxygen-enriched microgravity environment[J]. Fire Technology, 2020, 56(1): 71-89 doi: 10.1007/s10694-019-00896-8
|
| [90] |
ZHU F, LU Z B, WANG S F. Flame spread and extinction over a thick solid fuel in low-velocity opposed and concurrent flows[J]. Microgravity Science and Technology, 2016, 28(2): 87-94 doi: 10.1007/s12217-015-9475-4
|
| [91] |
ZHU F, WANG S F, LU Z B. A comparative study of near-limit flame spread over a thick solid in space- and ground-based experiments[J]. Microgravity Science and Technology, 2018, 30(6): 943-949 doi: 10.1007/s12217-018-9655-0
|
| [92] |
XUE S, KONG W J. Smoke emission and temperature characteristics of the long-term overloaded wire in space[J]. Journal of Fire Sciences, 2019, 37(2): 99-116 doi: 10.1177/0734904118821665
|
| [93] |
ZHUANG H H, KONG W J. Smoke emission and distribution characteristics of overloaded wire insulations under microgravity[J]. Microgravity Science and Technology, 2022, 34(5): 81 doi: 10.1007/s12217-022-10007-y
|
| [94] |
WANG K, XIA W, WANG B R, et al. Study on fire initiation of wire insulation by a narrow channel at low pressure[J]. Microgravity Science and Technology, 2016, 28(2): 155-163 doi: 10.1007/s12217-016-9494-9
|
| [95] |
GUAN J F, FANG J, XUE Y, et al. Morphology and concentration of smoke from fluorinated ethylene propylene wire insulation in microgravity under forced airflow[J]. Journal of Hazardous Materials, 2016, 320: 602-611 doi: 10.1016/j.jhazmat.2016.07.056
|
| [96] |
HU L H, DELICHATSIOS M A, LI J, et al. Experimental study on diffusive solid combustion behavior during transition from normal- to reduced-gravity[J]. International Journal of Heat and Mass Transfer, 2012, 55(7/8): 2035-2043
|
| [97] |
WANG S F, HU J, XIAO Y, et al. Opposed-flow flame spread over solid fuels in microgravity: the effect of confined spaces[J]. Microgravity Science and Technology, 2015, 27(5): 329-336 doi: 10.1007/s12217-015-9419-z
|
| [98] |
WANG S F, ZHU F. Flame spread in low-speed forced flows: ground- and space-based experiments[M]//HU W R, KANG Q. Physical Science Under Microgravity: Experiments on Board the SJ-10 Recoverable Satellite. Singapore: Springer, 2019: 237-262
|
| [99] |
WU C J, SUN P Y, WANG X Z, et al. Flame extinction of spherical PMMA in microgravity: effect of fuel diameter and conduction[J]. Microgravity Science and Technology, 2020, 32(6): 1065-1075 doi: 10.1007/s12217-020-09829-5
|
| [100] |
SUN P Y, WU C J, ZHU F, et al. Microgravity combustion of polyethylene droplet in drop tower[J]. Combustion and Flame, 2020, 222: 18-26 doi: 10.1016/j.combustflame.2020.08.032
|
| [101] |
ZHU F, HUANG X Y, WANG S F. Flame spread over polyethylene film: effects of gravity and fuel inclination[J]. Microgravity Science and Technology, 2022, 34(3): 26 doi: 10.1007/s12217-022-09945-4
|
| [102] |
张振忠, 孔文俊, 张华良. 空间站燃烧科学实验系统设计[J]. 空间科学学报, 2020, 40(1): 72-78 doi: 10.11728/cjss2020.01.072
ZHANG Zhenzhong, KONG Wenjun, ZHANG Hualiang. Design of combustion science experimental system for China Space Station[J]. Chinese Journal of Space Science, 2020, 40(1): 72-78 doi: 10.11728/cjss2020.01.072
|
| [103] |
张晓武, 郑会龙, 王琨, 等. 中国空间站燃烧科学实验系统燃烧室设计与分析[J]. 空间科学学报, 2021, 41(2): 301-309 doi: 10.11728/cjss2021.02.301
ZHANG Xiaowu, ZHENG Huilong, WANG Kun, et al. Combustion chamber design and analysis of the space station combustion science experimental system[J]. Chinese Journal of Space Science, 2021, 41(2): 301-309 doi: 10.11728/cjss2021.02.301
|