Volume 43 Issue 3
Jul.  2023
Turn off MathJax
Article Contents
LIU Wei, LUO Bingxian, GONG Jiancun, HE Quan, WANG Ronglan, XIANG Kaiheng. Construction and Verification of DAM Model (in Chinese). Chinese Journal of Space Science, 2023, 43(3): 475-484 doi: 10.11728/cjss2023.03.2023-0007
Citation: LIU Wei, LUO Bingxian, GONG Jiancun, HE Quan, WANG Ronglan, XIANG Kaiheng. Construction and Verification of DAM Model (in Chinese). Chinese Journal of Space Science, 2023, 43(3): 475-484 doi: 10.11728/cjss2023.03.2023-0007

Construction and Verification of DAM Model

doi: 10.11728/cjss2023.03.2023-0007 cstr: 32142.14.cjss2023.03.2023-0007
  • Received Date: 2023-01-12
  • Rev Recd Date: 2023-03-19
  • Available Online: 2023-04-23
  • The physical model of the thermosphere and the empirical and semi-empirical model of the thermosphere are analyzed. The basic theory and code analysis of the empirical thermosphere model are used to clarify the model construction methods. Based on the current situation of atmospheric modeling in China, the difficulties are analyzed and development suggestions are given. Based on the GOST model, the prediction performance of atmospheric model in geomagnetic disturbed period was analyzed, and the construction of atmospheric model in geomagnetic storm period was studied. The Disturbed Atmospheric Model (DAM) was constructed based on the measured density data, and its validity was verified. It is found that the mean relative errors of GOST, MSIS00 and DAM models are 64.32%, –176.72% and –14.83%, respectively, within the range of geomagnetic index Ap 100~132. As Ap is within the range of 80~132, the relative error mean of each model is 77.44%, –136.74%, –14.14% respectively, DAM model is significantly improved compared with GOST and MSIS00. It is proved that the modeling method of estimating model parameters by building an atmospheric model framework and measured density data is feasible and effective.

     

  • loading
  • [1]
    PRIESTER W, RÖEMER M, VOLLAND H. The physical behavior of the upper atmosphere deduced from satellite drag data[J]. Space Science Reviews, 1967, 6(6): 707-780
    [2]
    HARRIS I, PRIESTER W. Time-dependent structure of the upper atmosphere[J]. Journal of the Atmospheric Sciences, 1962, 19(4): 286-301 doi: 10.1175/1520-0469(1962)019<0286:TDSOTU>2.0.CO;2
    [3]
    JACCHIA L G. Static diffusion models of the upper atmosphere with empirical temperature profiles[J]. Smithsonian Contributions to Astrophysics, 1965, 8(9): 213-257 doi: 10.5479/si.00810231.8-9.213
    [4]
    BOWMAN B R, TOBISKA W K, MARCOS F A, et al. A new empirical thermospheric density model JB2008 using new solar and geomagnetic indices[C]//Proceedings of the AIAA/AAS Astrodynamics Specialist Conference and Exhibit. Honolulu: AIAA, 2008
    [5]
    MARCOS F A. Accuracy of atmospheric drag models at low satellite altitudes[J]. Advances in Space Research, 1990, 10(3/4): 417-422
    [6]
    GRANHOLM G R. Near-real time atmospheric density model correction using space catalog data[R]. Cambridge: Massachusetts Institute of Technology, 2000
    [7]
    吴连大. 人造卫星与空间碎片的轨道和探测[M]. 北京: 中国科学技术出版社, 2011

    WU Lianda. Orbiting and Detection of Artificial Satellites and Space Debris[M]. Beijing: Science and Technology of China Press, 2011
    [8]
    ZHANG Y, YU J J, CHEN J Y, et al. An empirical atmospheric density calibration model based on long short-term memory neural network[J]. Atmosphere, 2021, 12(7): 925 doi: 10.3390/atmos12070925
    [9]
    李勰, 唐歌实, 李正, 等. 基于温度参数的经验密度模式修正方法[J]. 载人航天, 2015, 21(1): 48-52,90 doi: 10.3969/j.issn.1674-5825.2015.01.009

    LI Xie, TANG Geshi, LI Zheng, et al. A method for calibrating empirical density model based on temperature parameters[J]. Manned Spaceflight, 2015, 21(1): 48-52,90 doi: 10.3969/j.issn.1674-5825.2015.01.009
    [10]
    RUAN H B, LEI J H, DOU X K, et al. An exospheric temperature model based on CHAMP observations and TIEGCM simulations[J]. Space Weather, 2018, 16(2): 147-156 doi: 10.1002/2017SW001759
    [11]
    刘卫, 龚建村, 刘四清, 等. HASDM修正方法分析与评估[J]. 空间科学学报, 2019, 39(5): 638-647 doi: 10.11728/cjss2019.05.638

    LIU Wei, GONG Jiancun, LIU Siqing, et al. Analysis and evaluation of high accuracy satellite drag model[J]. Chinese Journal of Space Science, 2019, 39(5): 638-647 doi: 10.11728/cjss2019.05.638
    [12]
    QIAN L Y, BURNS A, EMERY B A, et al. The NCAR TIE-GCM: a community model of the coupled thermosphere/ionosphere system[M]//HUBA J, SCHUNK R, KHAZANOV G. Modeling the Ionosphere–Thermosphere System. Washington: John Wiley & Sons, 2014: 73-84
    [13]
    BOUGHER S W, BLELLY P L, COMBI M, et al. Neutral upper atmosphere and ionosphere modeling[J]. Space Science Reviews, 2008, 139(1/2/3/4): 107-141
    [14]
    DICKINSON R E, RIDLEY E C, ROBLE R G. A three-dimensional general circulation model of the thermosphere[J]. Journal of Geophysical Research: Space Physics, 1981, 86(A3): 1499-1512 doi: 10.1029/JA086iA03p01499
    [15]
    SUTTON E K. A new method of physics-based data assimilation for the quiet and disturbed thermosphere[J]. Space Weather, 2018, 16(6): 736-753 doi: 10.1002/2017SW001785
    [16]
    DOORNBOS E. Thermospheric Density and Wind Determination from Satellite Dynamics[M]. Heidelberg: Springer, 2012
    [17]
    EMMERT J T, DROB D P, PICONE J M, et al. NRLMSIS 2.0: A whole-atmosphere empirical model of temperature and neutral species densities[J]. Earth and Space Science, 2021, 8(3): e2020EA001321
    [18]
    BRUINSMA S, BONIFACE C. The operational and research DTM-2020 thermosphere models[J]. Journal of Space Weather and Space Climate, 2021, 11: 47 doi: 10.1051/swsc/2021032
    [19]
    EMMERT J T. Thermospheric mass density: a review[J]. Advances in Space Research, 2015, 56(5): 773-824 doi: 10.1016/j.asr.2015.05.038
    [20]
    CEFOLA P, VOLKOV I, SUEVALOV V. Description of the russian upper atmosphere density model GOST-2004[C]//37 th COSPAR Scientific Assembly. Montréal: COSPAR, 2008
    [21]
    VALLADO D A, MCCLAIN W D. Fundamentals of Astrodynamics and Applications[M]. Dordrecht: Kluwer Academic Publishers, 2001
    [22]
    刘卫, 王荣兰, 刘四清, 等. 典型热层密度模式误差分析[J]. 空间科学学报, 2017, 37(5): 538-546 doi: 10.11728/cjss2017.05.538

    LIU Wei, WANG Ronglan, LIU Siqing, et al. Error analysis of typical atmospheric density model[J]. Chinese Journal of Space Science, 2017, 37(5): 538-546 doi: 10.11728/cjss2017.05.538
    [23]
    刘卫. 热层大气模型动态修正建模与应用[D]. 北京: 中国科学院大学, 2022

    LIU Wei. Modeling and application of Dynamic Calibration Atmosphere[D]. Beijing: University of Chinese Academy of Sciences, 2022
    [24]
    刘卫, 刘四清, 龚建村, 等. 基于高斯分布的密度误差对航天器轨道的影响分析[J]. 空间碎片研究, 2019, 19(2): 10-17

    LIU Wei, LIU Siqing, GONG Jiancun, et al. Analysis of effect of gauss distribution density error on spacecraft orbit[J]. Space Debris Research, 2019, 19(2): 10-17
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(6)

    Article Metrics

    Article Views(666) PDF Downloads(58) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return