Citation: | XIONG Ming, FENG Xueshang, XIA Lidong, HUANG Zhenghua, LI Bo, GAO Yanchen, LIU Weixin, SUN Mingzhe, ZHANG Hongxin, DAI Shuwu, WANG Ying. Suggestions on Scientific Objectives of Deep-space Satellite Constellation to Explore the Sun and Inner-heliosphere from an Unprecedented Stereoscopic Panorama Viewpoint (in Chinese). Chinese Journal of Space Science, 2023, 43(3): 389-405 doi: 10.11728/cjss2023.03.210728081 |
[1] |
BALOGH A, LANZERO L, SUESS S T. The Heliosphere Through the Solar Activity Cycle[M]. Berlin: Springer, 2010
|
[2] |
Committee on a Decadal Strategy for Solar and Space Physics, Space Studies Board, Aeronautics and Space Engineering Board, et al. Solar and Space Physics: A Science for a Technological Society[M]. Washington: The National Academies Press, 2013
|
[3] |
魏奉思. 空间天气学[J]. 地球物理学进展, 1999, 14(S1): 1-7 doi: 10.3969/j.issn.1004-2903.1999.z1.001
WEI Fengsi. Space weather[J]. Progress in Geophysics, 1999, 14(S1): 1-7 doi: 10.3969/j.issn.1004-2903.1999.z1.001
|
[4] |
汪景琇, 季海生. 空间天气驱动源——太阳风暴研究[J]. 中国科学:地球科学, 2013, 56(7): 1091-1117 doi: 10.1007/s11430-013-4648-8
WANG Jingxiu, JI Haisheng. Recent advances in solar storm studies in China[J]. Science China Earth Sciences, 2013, 56(7): 1091-1117 doi: 10.1007/s11430-013-4648-8
|
[5] |
National Science and Technology Council. National Space Weather Strategy: Space Weather Operations, Research, and Mitigation (SWORM) Task Force[M]. Washington: Executive Office of the President of the United States, 2015
|
[6] |
THOMPSON M J, TOOMRE J, ANDERSON E R, et al. Differential rotation and dynamics of the solar interior[J]. Science, 1996, 272(5266): 1300-1305 doi: 10.1126/science.272.5266.1300
|
[7] |
TURCK-CHIÈZE S, COUVIDAT S. Solar neutrinos, helioseismology and the solar internal dynamics[J]. Reports on Progress in Physics, 2011, 74(8): 086901 doi: 10.1088/0034-4885/74/8/086901
|
[8] |
SCHRIJVER C J, TITLE A M, VAN BALLEGOOIJEN A A, et al. Sustaining the quiet photospheric network: the balance of flux emergence, fragmentation, merging, and cancellation[J]. The Astrophysical Journal, 1997, 487(1): 424-436 doi: 10.1086/304581
|
[9] |
YASHIRO S, GOPALSWAMY N, MICHALEK G, et al. A catalog of white light coronal mass ejections observed by the SOHO spacecraft[J]. Journal of Geophysical Research: Space Physics, 2004, 109(A7): A07105
|
[10] |
TSURUTANI B T, JUDGE D L, GUARNIERI F L, et al. The October 28, 2003 extreme EUV solar flare and resultant extreme ionospheric effects: comparison to other Halloween events and the bastille day event[J]. Geophysical Research Letters, 2005, 32(3): L03S09
|
[11] |
TU C Y, ZHOU C, MARSCH E, et al. Solar wind origin in coronal funnels[J]. Science, 2005, 308(5721): 519-523 doi: 10.1126/science.1109447
|
[12] |
KOHL J L, NOCI G, ANTONUCCI E, et al. UVCS/SOHO empirical determinations of anisotropic velocity distributions in the solar corona[J]. The Astrophysical Journal, 1998, 501(1): L127-L131 doi: 10.1086/311434
|
[13] |
THOMPSON B J, PLUNKETT S P, GURMAN J B, et al. SOHO/EIT observations of an Earth-directed coronal mass ejection on May 12, 1997[J]. Geophysical Research Letters, 1998, 25(14): 2465-2468 doi: 10.1029/98GL50429
|
[14] |
KOSOVICHEV A G, ZHARKOVA V V. X-ray flare sparks quake inside sun[J]. Nature, 1998, 393(6683): 317-318 doi: 10.1038/30629
|
[15] |
PIKE C D, MASON H E. Rotating transition region features observed with the SOHO coronal diagnostic spectrometer[J]. Solar Physics, 1998, 182(2): 333-348 doi: 10.1023/A:1005065704108
|
[16] |
ZHAO J W, KOSOVICHEV A G, DUVALL T L JR. Investigation of mass flows beneath a sunspot by time-distance helioseismology[J]. The Astrophysical Journal, 2001, 557(1): 384-388 doi: 10.1086/321491
|
[17] |
TERIACA L, BANERJEE D, FALCHI A, et al. Transition region small-scale dynamics as seen by SUMER on SOHO[J]. Astronomy & Astrophysics, 2004, 427(3): 1065-1074
|
[18] |
BIESECKER D A, LAMY P, ST CYR O C, et al. Sungrazing comets discovered with the SOHO/LASCO coronagraphs 1996-1998[J]. Icarus, 2002, 157(2): 323-348 doi: 10.1006/icar.2002.6827
|
[19] |
HARRISON R A, DAVIS C J, EYLES C J, et al. First imaging of coronal mass ejections in the heliosphere viewed from outside the Sun - Earth line[J]. Solar Physics, 2008, 247(1): 171-193 doi: 10.1007/s11207-007-9083-6
|
[20] |
DEFOREST C E, HOWARD T A, TAPPIN S J. Observations of detailed structure in the solar wind at 1 AU with STEREO/HI-2[J]. The Astrophysical Journal, 2011, 738(1): 103 doi: 10.1088/0004-637X/738/1/103
|
[21] |
MCCOMAS D J, BARRACLOUGH B L, FUNSTEN H O, et al. Solar wind observations over Ulysses’ first full polar orbit[J]. Journal of Geophysical Research: Space Physics, 2000, 105(A5): 10419-10433 doi: 10.1029/1999JA000383
|
[22] |
MCCOMAS D J, ELLIOTT H A, SCHWADRON N A, et al. The three-dimensional solar wind around solar maximum[J]. Geophysical Research Letters, 2003, 30(10): 1517
|
[23] |
MCCOMAS D J, EBERT R W, ELLIOTT H A, et al. Weaker solar wind from the polar coronal holes and the whole sun[J]. Geophysical Research Letters, 2008, 35(18): L18103 doi: 10.1029/2008GL034896
|
[24] |
LIU W, OFMAN L. Advances in observing various coronal EUV waves in the SDO era and their seismological applications (invited review)[J]. Solar Physics 2014, 289(9): 3233-3277
|
[25] |
BOBRA M G, COUVIDAT S. Solar flare prediction using SDO/HMI vector magnetic field data with a machine-learning algorithm[J]. The Astrophysical Journal, 2015, 798(2): 135 doi: 10.1088/0004-637X/798/2/135
|
[26] |
ZHAO J W, BOGART R S, KOSOVICHEV A G, et al. Detection of equatorward meridional flow and evidence of double-cell meridional circulation inside the Sun[J]. The Astrophysical Journal, 2013, 774(2): L29 doi: 10.1088/2041-8205/774/2/L29
|
[27] |
WOODS T N, HOCK R, EPARVIER F, et al. New solar extreme-ultraviolet irradiance observations during flares[J]. The Astrophysical Journal, 2011, 739(2): 59 doi: 10.1088/0004-637X/739/2/59
|
[28] |
KASPER J C, BALE S D, BELCHER J W, et al. Alfvénic velocity spikes and rotational flows in the near-sun solar wind[J]. Nature, 2019, 576(7786): 228-231 doi: 10.1038/s41586-019-1813-z
|
[29] |
BALE S D, BADMAN S T, BONNELL J W, et al. Highly structured slow solar wind emerging from an equatorial coronal hole[J]. Nature, 2019, 576(7786): 237-242 doi: 10.1038/s41586-019-1818-7
|
[30] |
MCCOMAS D J, CHRISTIAN E R, COHEN C M S, et al. Probing the energetic particle environment near the Sun[J]. Nature, 2019, 576(7786): 223-227 doi: 10.1038/s41586-019-1811-1
|
[31] |
HOWARD R A, VOURLIDAS A, BOTHMER V, et al. Near-Sun observations of an F-corona decrease and K-corona fine structure[J]. Nature, 2019, 576(7786): 232-236 doi: 10.1038/s41586-019-1807-x
|
[32] |
MIERLA M, ZHUKOV A N, BERGHMANS D, et al. Prominence eruption observed in He II 304 Å up to >6 R⊙ by EUI/FSI aboard solar orbiter[J]. Astronomy & Astrophysics, 2022, 662: L5
|
[33] |
BERGHMANS D, AUCHÈRE F, LONG D M, et al. Extreme-UV quiet sun brightenings observed by the solar orbiter/EUI[J]. Astronomy & Astrophysics, 2021, 656: L4
|
[34] |
WENZEL K P, MARSDEN R G, PAGE D E, et al. The Ulysses mission[J]. Astronomy and Astrophysics Supplement, 1992, 92(2/JAN): 207
|
[35] |
FOX N J, VELLI M C, BALE S D, et al. The solar probe plus mission: humanity’s first visit to our star[J]. Space Science Reviews, 2016, 204(1/2/3/4): 7-48
|
[36] |
MÜLLER D, MARSDEN R G, ST CYR O C, et al. Solar orbiter: exploring the sun–heliosphere connection[J]. Solar Physics, 2013, 285(1/2): 25-70
|
[37] |
XIONG M, DAVIES J A, BISI M M, et al. Effects of Thomson-scattering geometry on white-light imaging of an interplanetary shock: synthetic observations from forward magnetohydrodynamic modelling[J]. Solar Physics, 2013, 285(1/2): 369-389
|
[38] |
周茹芸, 汪毓明, 宿英娜, 等. 利用双视角改正太阳矢量磁场观测中的180°不确定性[J]. 天文学报, 2021, 62(4): 41
ZHOU Ruyun, WANG Yuming, SU Yingna, et al. Using observations of solar vector magnetic field from dual view points to remove the 180° ambiguity[J]. Acta Astronomica Sinica, 2021, 62(4): 41
|
[39] |
ZHOU G P, WANG J X, WANG Y M, et al. Quasi-simultaneous flux emergence in the events of October-November 2003[J]. Solar Physics, 2007, 244(1/2): 13-24
|
[40] |
CAMERON R, SCHÜSSLER M. The crucial role of surface magnetic fields for the solar dynamo[J]. Science, 2015, 347(6228): 1333-1335 doi: 10.1126/science.1261470
|
[41] |
GIZON L, CAMERON R H, BEKKI Y, et al. Solar inertial modes: observations, identification, and diagnostic promise[J]. Astronomy & Astrophysics, 2021, 652: L6
|
[42] |
GIZON L, CAMERON R H, POURABDIAN M, et al. Meridional flow in the Sun’s convection zone is a single cell in each hemisphere[J]. Science, 2020, 368(6498): 1469-1472 doi: 10.1126/science.aaz7119
|
[43] |
PRIEST E R, LONGCOPE D W. The creation of twist by reconnection of flux tubes[J]. Solar Physics, 2020, 295(3): 48 doi: 10.1007/s11207-020-01608-0
|
[44] |
TÖRÖK T, KLIEM B. Confined and ejective eruptions of kink-unstable flux ropes[J]. The Astrophysical Journal, 2005, 630(1): L97-L100 doi: 10.1086/462412
|
[45] |
BURLAGA L, SITTLER E, MARIANI F, SCHWENN R. Magnetic loop behind an interplanetary shock: Voyager, Helios, and IMP 8 observations[J]. Journal of Geophysical Research: Space Physics, 1981, 86(A8): 6673-6684 doi: 10.1029/JA086iA08p06673
|
[46] |
WANG Y M, ZHUANG B, HU Q, et al. On the twists of interplanetary magnetic flux ropes observed at 1 AU[J]. Journal of Geophysical Research: Space Physics, 2016, 121(10): 9316-9339 doi: 10.1002/2016JA023075
|
[47] |
LIU Y, DAVIES J A, LUHMANN J G, et al. Geometric triangulation of imaging observations to track coronal mass ejections continuously out to 1 AU[J]. The Astrophysical Journal, 2010, 710(1): L82-L87 doi: 10.1088/2041-8205/710/1/L82
|
[48] |
LUGAZ N, HERNANDEZ-CHARPAK J N, ROUSSEV I I, et al. Determining the azimuthal properties of coronal mass ejections from multi-spacecraft remote-sensing observations with STEREO SECCHI[J]. The Astrophysical Journal, 2010, 715(1): 493-499 doi: 10.1088/0004-637X/715/1/493
|
[49] |
LYU S Y, WANG Y M, LI X L, et al. Three-dimensional reconstruction of coronal mass ejections by the correlation-aided reconstruction technique through different stereoscopic angles of the solar terrestrial relations observatory twin spacecraft[J]. The Astrophysical Journal, 2021, 909(2): 182 doi: 10.3847/1538-4357/abd9c9
|
[50] |
XIONG M, DAVIES J A, HARRISON R A, et al. Prospective out-of-ecliptic white-light imaging of coronal mass ejections traveling through the corona and heliosphere[J]. The Astrophysical Journal, 2018, 852(2): 111 doi: 10.3847/1538-4357/aaa028
|
[51] |
XIONG M, DAVIES J A, FENG X S, et al. Prospective white-light imaging and in situ measurements of quiescent large-scale solar-wind streams from the Parker Solar Probe and Solar Orbiter[J]. The Astrophysical Journal, 2018, 868(2): 137 doi: 10.3847/1538-4357/aae978
|
[52] |
BEMPORAD A. Possible advantages of a twin spacecraft heliospheric mission at the Sun-Earth Lagrangian points L4 and L5[J]. Frontiers in Astronomy and Space Sciences, 2021, 8: 627576 doi: 10.3389/fspas.2021.627576
|
[53] |
WANG Y M, YE P Z, WANG S, et al. A statistical study on the geoeffectiveness of Earth-directed coronal mass ejections from March 1997 to December 2000[J]. Journal of Geophysical Research: Space Physics, 2002, 107(A11): 1340 doi: 10.1029/2002JA009244
|
[54] |
ZHANG J, DERE K P, HOWARD R A, et al. Identification of solar sources of major geomagnetic storms between 1996 and 2000[J]. The Astrophysical Journal, 2003, 582(1): 520-533 doi: 10.1086/344611
|
[55] |
LIU Y D, HU H D, WANG C, et al. On sun-to-Earth propagation of coronal mass ejections: II. Slow events and comparison with others[J]. The Astrophysical Journal, 2016, 222(2): 23 doi: 10.3847/0067-0049/222/2/23
|
[56] |
WEI F S, DRYER M. Propagation of solar flare-associated interplanetary shock waves in the heliospheric meridional plane[J]. Solar Physics, 1991, 132(2): 373-394 doi: 10.1007/BF00152294
|
[57] |
BURLAGA L F, BEHANNON K W, KLEIN L W. Compound streams, magnetic clouds, and major geomagnetic storms[J]. Journal of Geophysical Research, 1987, 92(A6): 5725 doi: 10.1029/JA092iA06p05725
|
[58] |
WANG Y M, YE P Z, WANG S. Multiple magnetic clouds: several examples during March-April 2001[J]. Journal of Geophysical Research: Space Physics, 2003, 108(A10): 1370 doi: 10.1029/2003JA009850
|
[59] |
WANG Y M, YE P Z, WANG S, et al. An interplanetary cause of large geomagnetic storms: fast forward shock overtaking preceding magnetic cloud[J]. Geophysical Research Letters, 2003, 30(13): 1700
|
[60] |
XIONG M, ZHENG H N, WANG Y M, et al. Magnetohydrodynamic simulation of the interaction between interplanetary strong shock and magnetic cloud and its consequent geoeffectiveness[J]. Journal of Geophysical Research: Space Physics, 2006, 111(A8): A08105
|
[61] |
XIONG M, ZHENG H N, WU S T, et al. Magnetohydrodynamic simulation of the interaction between two interplanetary magnetic clouds and its consequent geoeffectiveness[J]. Journal of Geophysical Research: Space Physics, 2007, 112(A11): A11103
|
[62] |
LIU Y D, ZHAO X W, HU H D, et al. A comparative study of 2017 July and 2012 July complex eruptions: are solar superstorms “perfect storms” in nature[J]. The Astrophysical Journal Supplement Series, 2019, 241(2): 15 doi: 10.3847/1538-4365/ab0649
|
[63] |
HUANG Z H, ZHANG Q H, XIA L D, et al. Population of bright plume threads in solar polar coronal holes[J]. Solar Physics, 2021, 296(1): 22 doi: 10.1007/s11207-021-01773-w
|
[64] |
何建森, 涂传诒. 太阳风的加热与加速[J]. 中国科学: 地球科学, 2013, 43(6): 990-1001 doi: 10.1360/zd-2013-43-6-990
HE Jiansen, TU Chuanyi. Heating and acceleration of solar wind[J]. Scientia Sinica Terrae, 2013, 43(6): 990-1001 doi: 10.1360/zd-2013-43-6-990
|
[65] |
SAKAO T, KANO R, NARUKAGE N, et al. Continuous plasma outflows from the edge of a solar active region as a possible source of solar wind[J]. Science, 2007, 318(5856): 1585-1588 doi: 10.1126/science.1147292
|
[66] |
LINKER J A, CAPLAN R M, DOWNS C, et al. The open flux problem[J]. The Astrophysical Journal, 2017, 848(1): 70 doi: 10.3847/1538-4357/aa8a70
|
[67] |
FISK L A, SCHWADRON N A. The behavior of the open magnetic field of the sun[J]. The Astrophysical Journal, 2001, 560(1): 425-438 doi: 10.1086/322503
|
[68] |
XIONG M, DAVIES J A, LI B, et al. Prospective out-of-ecliptic white-light imaging of interplanetary corotating interaction regions at solar maximum[J]. The Astrophysical Journal, 2017, 844: 76 doi: 10.3847/1538-4357/aa7aaa
|
[69] |
刘振兴. 地球空间双星探测计划[J]. 地球物理学报, 2001, 44(4): 573-580 doi: 10.3321/j.issn:0001-5733.2001.04.016
LIU Zhenxing. Geospace double star exploration project[J]. Chinese Journal of Geophysics, 2001, 44(4): 573-580 doi: 10.3321/j.issn:0001-5733.2001.04.016
|
[70] |
甘为群, 颜毅华, 黄宇, 等. 2016-2030年我国空间太阳物理发展的若干思考[J]. 中国科学: 物理学 力学 天文学, 2019, 49(5): 059602
GAN Weiqun, YAN Yihua, HUANG Yu, et al. Prospect for space solar physics in 2016–2030[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2019, 49(5): 059602
|
[71] |
FENG X S. Magnetohydrodynamic Modeling of the Solar Corona and Heliosphere[M]. Singapore: Springer, 2020
|
[72] |
LI H C, FENG X S. CESE-HLL magnetic field-driven modeling of the background solar wind during year 2008[J]. Journal of Geophysical Research: Space Physics, 2018, 123(6): 4488-4509 doi: 10.1029/2017JA025125
|
[73] |
DEFOREST C, KILLOUGH R, GIBSON S, et al. Polarimeter to UNify the Corona and Heliosphere (PUNCH): Science, Status, and Path to Flight[C]// 2022 IEEE Aerospace Conference. Big Sky: IEEE, 2022: 1-11
|
[74] |
WANG C, BRANDUARDI-RAYMOND G. Progress of solar wind magnetosphere ionosphere link explorer (SMILE) mission[J]. Chinese Journal of Space Science, 2018, 38(5): 657-661 doi: 10.11728/cjss2018.05.657
|
[75] |
LAVRAUD B, LIU Y, SEGURA K, et al. A small mission concept to the Sun-Earth Lsagrangian L5 point for innovative solar, heliospheric and space weather science[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2016, 146: 171-185 doi: 10.1016/j.jastp.2016.06.004
|
[76] |
WANG Y M, BAI X Y, CHEN C Y, et al. Solar ring mission: building a panorama of the Sun and inner-heliosphere[J]. Advances in Space Research, 2023, 71(1): 1146-1164 doi: 10.1016/j.asr.2022.10.045
|
[77] |
杨孟飞, 汪景琇, 王赤, 等. 太阳立体探测任务设想[J]. 科学通报, 2023, 68(8): 859-871 doi: 10.1360/TB-2022-0706
YANG Mengfei, WANG Jingxiu, WANG Chi, et al. Envisioning the solar stereo exploration mission[J]. Chinese Science Bulletin, 2023, 68(8): 859-871 doi: 10.1360/TB-2022-0706
|
[78] |
林隽, 黄善杰, 李燕, 等. 太阳爆发抵近探测——“触碰计划”[J]. 空间科学学报, 2021, 41(2): 183-210 doi: 10.11728/cjss2021.02.183
LIN Jun, HUANG Shanjie, LI Yan, et al. In situ detection of the solar eruption: lay a finger on the sun[J]. Chinese Journal of Space Science, 2021, 41(2): 183-210 doi: 10.11728/cjss2021.02.183
|
[79] |
邓元勇, 周桂萍, 代树武, 等. 太阳极轨天文台[J]. 科学通报, 2023, 68(4): 298-308 doi: 10.1360/TB-2022-0674
DENG Yuanyong, ZHOU Guiping, DAI Shuwu, et al. Solar polar-orbit observatory[J]. Chinese Science Bulletin, 2023, 68(4): 298-308 doi: 10.1360/TB-2022-0674
|
[80] |
田晖, 白先勇, 邓元勇, 等. 晚型恒星极紫外和X射线探测的科学目标与初步方案[J]. 中国科学: 物理学 力学 天文学, 2022, 52(11): 119511
TIAN Hui, BAI Xianyong, DENG Yuanyong, et al. Scientific objectives and preliminary plans for EUV and X-ray observations of late-type stars[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2022, 52(11): 119511
|
[81] |
傅绥燕, 徐寄遥, 魏勇, 等. 探索中前行——中国空间物理研究70年[J]. 中国科学: 地球科学, 2019, 49(10): 1641-1658 doi: 10.1360/SSTe-2019-0131
FU Suiyan, XU Jiyao, WEI Yong, et al. Seventy years of space physics research in China[J]. Scientia Sinica Terrae, 2019, 49(10): 1641-1658 doi: 10.1360/SSTe-2019-0131
|
[82] |
HARRA L, ANDRETTA V, APPOURCHAUX T, et al. A journey of exploration to the polar regions of a star: probing the solar poles and the heliosphere from high Helio-latitude[J]. Experimental Astronomy, 2022, 54(2/3): 157-183
|
[83] |
APPOURCHAUX T, LIEWER P, WATT M, et al. POLAR investigation of the sun POLARIS[J]. Experimental Astronomy, 2009, 23(3): 1079-1117 doi: 10.1007/s10686-008-9107-8
|
[84] |
WU J, SUN W Y, ZHENG J H, et al. Imaging interplanetary CMEs at radio frequency from solar polar orbit[J]. Advances in Space Research, 2011, 48(5): 943-954 doi: 10.1016/j.asr.2011.05.001
|
[85] |
XIONG M, LIU Y, LIU H, et al. Overview of the solar polar orbit telescope project for space weather mission[J]. Chinese Journal of Space Science, 2016, 36(3): 245-266 doi: 10.11728/cjss2016.03.245
|