Volume 43 Issue 3
Jul.  2023
Turn off MathJax
Article Contents
XIONG Ming, FENG Xueshang, XIA Lidong, HUANG Zhenghua, LI Bo, GAO Yanchen, LIU Weixin, SUN Mingzhe, ZHANG Hongxin, DAI Shuwu, WANG Ying. Suggestions on Scientific Objectives of Deep-space Satellite Constellation to Explore the Sun and Inner-heliosphere from an Unprecedented Stereoscopic Panorama Viewpoint (in Chinese). Chinese Journal of Space Science, 2023, 43(3): 389-405 doi: 10.11728/cjss2023.03.210728081
Citation: XIONG Ming, FENG Xueshang, XIA Lidong, HUANG Zhenghua, LI Bo, GAO Yanchen, LIU Weixin, SUN Mingzhe, ZHANG Hongxin, DAI Shuwu, WANG Ying. Suggestions on Scientific Objectives of Deep-space Satellite Constellation to Explore the Sun and Inner-heliosphere from an Unprecedented Stereoscopic Panorama Viewpoint (in Chinese). Chinese Journal of Space Science, 2023, 43(3): 389-405 doi: 10.11728/cjss2023.03.210728081

Suggestions on Scientific Objectives of Deep-space Satellite Constellation to Explore the Sun and Inner-heliosphere from an Unprecedented Stereoscopic Panorama Viewpoint

doi: 10.11728/cjss2023.03.210728081 cstr: 32142.14.cjss2023.03.210728081
  • Received Date: 2021-07-28
  • Rev Recd Date: 2023-02-09
  • Available Online: 2023-06-08
  • To meet the national strategic demands in understanding solar storms and safeguarding deep-space exploration, several solar and interplanetary mission concepts have been recently proposed in China. These mission concepts include one Sun-orbiting Lagrangian L3-L4-L5 satellite constellation in the ecliptic and twin Sun-orbiting polar satellites out of the ecliptic, aiming at an unprecedented stereoscopic view of the Sun and the inner heliosphere. For the joint multi-constellation mission, its scientific objects can be defined as solar magnetic field, solar storm, and solar wind, with its application object identified as space weather prediction. Each satellite is suggested to carry a suit of scientific instruments to measure photon emissions, particle radiation, and electromagnetic waves. Using the three-dimensional numerical magnetohydrodynamic simulation of solar-terrestrial space and the aesthetic visualization of computer graphic design, the exploration scenario of the in-ecliptic Sun-staring satellites and the out-of-ecliptic bird-view satellites is vividly presented. The potential multi-constellation mission in China is expected to be able to uncover the mysterious origin and eruption of solar magnetic field, understand the space weather chain of Sun-Earth coupling system, and provide the initial and boundary conditions for three-dimensional data-driven space weather modelling. Therefore, if being carried out successfully, such a multi-constellation mission can be a historic landmark in improving the performance of space weather monitoring, research, and service in China.

     

  • loading
  • [1]
    BALOGH A, LANZERO L, SUESS S T. The Heliosphere Through the Solar Activity Cycle[M]. Berlin: Springer, 2010
    [2]
    Committee on a Decadal Strategy for Solar and Space Physics, Space Studies Board, Aeronautics and Space Engineering Board, et al. Solar and Space Physics: A Science for a Technological Society[M]. Washington: The National Academies Press, 2013
    [3]
    魏奉思. 空间天气学[J]. 地球物理学进展, 1999, 14(S1): 1-7 doi: 10.3969/j.issn.1004-2903.1999.z1.001

    WEI Fengsi. Space weather[J]. Progress in Geophysics, 1999, 14(S1): 1-7 doi: 10.3969/j.issn.1004-2903.1999.z1.001
    [4]
    汪景琇, 季海生. 空间天气驱动源——太阳风暴研究[J]. 中国科学:地球科学, 2013, 56(7): 1091-1117 doi: 10.1007/s11430-013-4648-8

    WANG Jingxiu, JI Haisheng. Recent advances in solar storm studies in China[J]. Science China Earth Sciences, 2013, 56(7): 1091-1117 doi: 10.1007/s11430-013-4648-8
    [5]
    National Science and Technology Council. National Space Weather Strategy: Space Weather Operations, Research, and Mitigation (SWORM) Task Force[M]. Washington: Executive Office of the President of the United States, 2015
    [6]
    THOMPSON M J, TOOMRE J, ANDERSON E R, et al. Differential rotation and dynamics of the solar interior[J]. Science, 1996, 272(5266): 1300-1305 doi: 10.1126/science.272.5266.1300
    [7]
    TURCK-CHIÈZE S, COUVIDAT S. Solar neutrinos, helioseismology and the solar internal dynamics[J]. Reports on Progress in Physics, 2011, 74(8): 086901 doi: 10.1088/0034-4885/74/8/086901
    [8]
    SCHRIJVER C J, TITLE A M, VAN BALLEGOOIJEN A A, et al. Sustaining the quiet photospheric network: the balance of flux emergence, fragmentation, merging, and cancellation[J]. The Astrophysical Journal, 1997, 487(1): 424-436 doi: 10.1086/304581
    [9]
    YASHIRO S, GOPALSWAMY N, MICHALEK G, et al. A catalog of white light coronal mass ejections observed by the SOHO spacecraft[J]. Journal of Geophysical Research: Space Physics, 2004, 109(A7): A07105
    [10]
    TSURUTANI B T, JUDGE D L, GUARNIERI F L, et al. The October 28, 2003 extreme EUV solar flare and resultant extreme ionospheric effects: comparison to other Halloween events and the bastille day event[J]. Geophysical Research Letters, 2005, 32(3): L03S09
    [11]
    TU C Y, ZHOU C, MARSCH E, et al. Solar wind origin in coronal funnels[J]. Science, 2005, 308(5721): 519-523 doi: 10.1126/science.1109447
    [12]
    KOHL J L, NOCI G, ANTONUCCI E, et al. UVCS/SOHO empirical determinations of anisotropic velocity distributions in the solar corona[J]. The Astrophysical Journal, 1998, 501(1): L127-L131 doi: 10.1086/311434
    [13]
    THOMPSON B J, PLUNKETT S P, GURMAN J B, et al. SOHO/EIT observations of an Earth-directed coronal mass ejection on May 12, 1997[J]. Geophysical Research Letters, 1998, 25(14): 2465-2468 doi: 10.1029/98GL50429
    [14]
    KOSOVICHEV A G, ZHARKOVA V V. X-ray flare sparks quake inside sun[J]. Nature, 1998, 393(6683): 317-318 doi: 10.1038/30629
    [15]
    PIKE C D, MASON H E. Rotating transition region features observed with the SOHO coronal diagnostic spectrometer[J]. Solar Physics, 1998, 182(2): 333-348 doi: 10.1023/A:1005065704108
    [16]
    ZHAO J W, KOSOVICHEV A G, DUVALL T L JR. Investigation of mass flows beneath a sunspot by time-distance helioseismology[J]. The Astrophysical Journal, 2001, 557(1): 384-388 doi: 10.1086/321491
    [17]
    TERIACA L, BANERJEE D, FALCHI A, et al. Transition region small-scale dynamics as seen by SUMER on SOHO[J]. Astronomy & Astrophysics, 2004, 427(3): 1065-1074
    [18]
    BIESECKER D A, LAMY P, ST CYR O C, et al. Sungrazing comets discovered with the SOHO/LASCO coronagraphs 1996-1998[J]. Icarus, 2002, 157(2): 323-348 doi: 10.1006/icar.2002.6827
    [19]
    HARRISON R A, DAVIS C J, EYLES C J, et al. First imaging of coronal mass ejections in the heliosphere viewed from outside the Sun - Earth line[J]. Solar Physics, 2008, 247(1): 171-193 doi: 10.1007/s11207-007-9083-6
    [20]
    DEFOREST C E, HOWARD T A, TAPPIN S J. Observations of detailed structure in the solar wind at 1 AU with STEREO/HI-2[J]. The Astrophysical Journal, 2011, 738(1): 103 doi: 10.1088/0004-637X/738/1/103
    [21]
    MCCOMAS D J, BARRACLOUGH B L, FUNSTEN H O, et al. Solar wind observations over Ulysses’ first full polar orbit[J]. Journal of Geophysical Research: Space Physics, 2000, 105(A5): 10419-10433 doi: 10.1029/1999JA000383
    [22]
    MCCOMAS D J, ELLIOTT H A, SCHWADRON N A, et al. The three-dimensional solar wind around solar maximum[J]. Geophysical Research Letters, 2003, 30(10): 1517
    [23]
    MCCOMAS D J, EBERT R W, ELLIOTT H A, et al. Weaker solar wind from the polar coronal holes and the whole sun[J]. Geophysical Research Letters, 2008, 35(18): L18103 doi: 10.1029/2008GL034896
    [24]
    LIU W, OFMAN L. Advances in observing various coronal EUV waves in the SDO era and their seismological applications (invited review)[J]. Solar Physics 2014, 289(9): 3233-3277
    [25]
    BOBRA M G, COUVIDAT S. Solar flare prediction using SDO/HMI vector magnetic field data with a machine-learning algorithm[J]. The Astrophysical Journal, 2015, 798(2): 135 doi: 10.1088/0004-637X/798/2/135
    [26]
    ZHAO J W, BOGART R S, KOSOVICHEV A G, et al. Detection of equatorward meridional flow and evidence of double-cell meridional circulation inside the Sun[J]. The Astrophysical Journal, 2013, 774(2): L29 doi: 10.1088/2041-8205/774/2/L29
    [27]
    WOODS T N, HOCK R, EPARVIER F, et al. New solar extreme-ultraviolet irradiance observations during flares[J]. The Astrophysical Journal, 2011, 739(2): 59 doi: 10.1088/0004-637X/739/2/59
    [28]
    KASPER J C, BALE S D, BELCHER J W, et al. Alfvénic velocity spikes and rotational flows in the near-sun solar wind[J]. Nature, 2019, 576(7786): 228-231 doi: 10.1038/s41586-019-1813-z
    [29]
    BALE S D, BADMAN S T, BONNELL J W, et al. Highly structured slow solar wind emerging from an equatorial coronal hole[J]. Nature, 2019, 576(7786): 237-242 doi: 10.1038/s41586-019-1818-7
    [30]
    MCCOMAS D J, CHRISTIAN E R, COHEN C M S, et al. Probing the energetic particle environment near the Sun[J]. Nature, 2019, 576(7786): 223-227 doi: 10.1038/s41586-019-1811-1
    [31]
    HOWARD R A, VOURLIDAS A, BOTHMER V, et al. Near-Sun observations of an F-corona decrease and K-corona fine structure[J]. Nature, 2019, 576(7786): 232-236 doi: 10.1038/s41586-019-1807-x
    [32]
    MIERLA M, ZHUKOV A N, BERGHMANS D, et al. Prominence eruption observed in He II 304 Å up to >6 R by EUI/FSI aboard solar orbiter[J]. Astronomy & Astrophysics, 2022, 662: L5
    [33]
    BERGHMANS D, AUCHÈRE F, LONG D M, et al. Extreme-UV quiet sun brightenings observed by the solar orbiter/EUI[J]. Astronomy & Astrophysics, 2021, 656: L4
    [34]
    WENZEL K P, MARSDEN R G, PAGE D E, et al. The Ulysses mission[J]. Astronomy and Astrophysics Supplement, 1992, 92(2/JAN): 207
    [35]
    FOX N J, VELLI M C, BALE S D, et al. The solar probe plus mission: humanity’s first visit to our star[J]. Space Science Reviews, 2016, 204(1/2/3/4): 7-48
    [36]
    MÜLLER D, MARSDEN R G, ST CYR O C, et al. Solar orbiter: exploring the sun–heliosphere connection[J]. Solar Physics, 2013, 285(1/2): 25-70
    [37]
    XIONG M, DAVIES J A, BISI M M, et al. Effects of Thomson-scattering geometry on white-light imaging of an interplanetary shock: synthetic observations from forward magnetohydrodynamic modelling[J]. Solar Physics, 2013, 285(1/2): 369-389
    [38]
    周茹芸, 汪毓明, 宿英娜, 等. 利用双视角改正太阳矢量磁场观测中的180°不确定性[J]. 天文学报, 2021, 62(4): 41

    ZHOU Ruyun, WANG Yuming, SU Yingna, et al. Using observations of solar vector magnetic field from dual view points to remove the 180° ambiguity[J]. Acta Astronomica Sinica, 2021, 62(4): 41
    [39]
    ZHOU G P, WANG J X, WANG Y M, et al. Quasi-simultaneous flux emergence in the events of October-November 2003[J]. Solar Physics, 2007, 244(1/2): 13-24
    [40]
    CAMERON R, SCHÜSSLER M. The crucial role of surface magnetic fields for the solar dynamo[J]. Science, 2015, 347(6228): 1333-1335 doi: 10.1126/science.1261470
    [41]
    GIZON L, CAMERON R H, BEKKI Y, et al. Solar inertial modes: observations, identification, and diagnostic promise[J]. Astronomy & Astrophysics, 2021, 652: L6
    [42]
    GIZON L, CAMERON R H, POURABDIAN M, et al. Meridional flow in the Sun’s convection zone is a single cell in each hemisphere[J]. Science, 2020, 368(6498): 1469-1472 doi: 10.1126/science.aaz7119
    [43]
    PRIEST E R, LONGCOPE D W. The creation of twist by reconnection of flux tubes[J]. Solar Physics, 2020, 295(3): 48 doi: 10.1007/s11207-020-01608-0
    [44]
    TÖRÖK T, KLIEM B. Confined and ejective eruptions of kink-unstable flux ropes[J]. The Astrophysical Journal, 2005, 630(1): L97-L100 doi: 10.1086/462412
    [45]
    BURLAGA L, SITTLER E, MARIANI F, SCHWENN R. Magnetic loop behind an interplanetary shock: Voyager, Helios, and IMP 8 observations[J]. Journal of Geophysical Research: Space Physics, 1981, 86(A8): 6673-6684 doi: 10.1029/JA086iA08p06673
    [46]
    WANG Y M, ZHUANG B, HU Q, et al. On the twists of interplanetary magnetic flux ropes observed at 1 AU[J]. Journal of Geophysical Research: Space Physics, 2016, 121(10): 9316-9339 doi: 10.1002/2016JA023075
    [47]
    LIU Y, DAVIES J A, LUHMANN J G, et al. Geometric triangulation of imaging observations to track coronal mass ejections continuously out to 1 AU[J]. The Astrophysical Journal, 2010, 710(1): L82-L87 doi: 10.1088/2041-8205/710/1/L82
    [48]
    LUGAZ N, HERNANDEZ-CHARPAK J N, ROUSSEV I I, et al. Determining the azimuthal properties of coronal mass ejections from multi-spacecraft remote-sensing observations with STEREO SECCHI[J]. The Astrophysical Journal, 2010, 715(1): 493-499 doi: 10.1088/0004-637X/715/1/493
    [49]
    LYU S Y, WANG Y M, LI X L, et al. Three-dimensional reconstruction of coronal mass ejections by the correlation-aided reconstruction technique through different stereoscopic angles of the solar terrestrial relations observatory twin spacecraft[J]. The Astrophysical Journal, 2021, 909(2): 182 doi: 10.3847/1538-4357/abd9c9
    [50]
    XIONG M, DAVIES J A, HARRISON R A, et al. Prospective out-of-ecliptic white-light imaging of coronal mass ejections traveling through the corona and heliosphere[J]. The Astrophysical Journal, 2018, 852(2): 111 doi: 10.3847/1538-4357/aaa028
    [51]
    XIONG M, DAVIES J A, FENG X S, et al. Prospective white-light imaging and in situ measurements of quiescent large-scale solar-wind streams from the Parker Solar Probe and Solar Orbiter[J]. The Astrophysical Journal, 2018, 868(2): 137 doi: 10.3847/1538-4357/aae978
    [52]
    BEMPORAD A. Possible advantages of a twin spacecraft heliospheric mission at the Sun-Earth Lagrangian points L4 and L5[J]. Frontiers in Astronomy and Space Sciences, 2021, 8: 627576 doi: 10.3389/fspas.2021.627576
    [53]
    WANG Y M, YE P Z, WANG S, et al. A statistical study on the geoeffectiveness of Earth-directed coronal mass ejections from March 1997 to December 2000[J]. Journal of Geophysical Research: Space Physics, 2002, 107(A11): 1340 doi: 10.1029/2002JA009244
    [54]
    ZHANG J, DERE K P, HOWARD R A, et al. Identification of solar sources of major geomagnetic storms between 1996 and 2000[J]. The Astrophysical Journal, 2003, 582(1): 520-533 doi: 10.1086/344611
    [55]
    LIU Y D, HU H D, WANG C, et al. On sun-to-Earth propagation of coronal mass ejections: II. Slow events and comparison with others[J]. The Astrophysical Journal, 2016, 222(2): 23 doi: 10.3847/0067-0049/222/2/23
    [56]
    WEI F S, DRYER M. Propagation of solar flare-associated interplanetary shock waves in the heliospheric meridional plane[J]. Solar Physics, 1991, 132(2): 373-394 doi: 10.1007/BF00152294
    [57]
    BURLAGA L F, BEHANNON K W, KLEIN L W. Compound streams, magnetic clouds, and major geomagnetic storms[J]. Journal of Geophysical Research, 1987, 92(A6): 5725 doi: 10.1029/JA092iA06p05725
    [58]
    WANG Y M, YE P Z, WANG S. Multiple magnetic clouds: several examples during March-April 2001[J]. Journal of Geophysical Research: Space Physics, 2003, 108(A10): 1370 doi: 10.1029/2003JA009850
    [59]
    WANG Y M, YE P Z, WANG S, et al. An interplanetary cause of large geomagnetic storms: fast forward shock overtaking preceding magnetic cloud[J]. Geophysical Research Letters, 2003, 30(13): 1700
    [60]
    XIONG M, ZHENG H N, WANG Y M, et al. Magnetohydrodynamic simulation of the interaction between interplanetary strong shock and magnetic cloud and its consequent geoeffectiveness[J]. Journal of Geophysical Research: Space Physics, 2006, 111(A8): A08105
    [61]
    XIONG M, ZHENG H N, WU S T, et al. Magnetohydrodynamic simulation of the interaction between two interplanetary magnetic clouds and its consequent geoeffectiveness[J]. Journal of Geophysical Research: Space Physics, 2007, 112(A11): A11103
    [62]
    LIU Y D, ZHAO X W, HU H D, et al. A comparative study of 2017 July and 2012 July complex eruptions: are solar superstorms “perfect storms” in nature[J]. The Astrophysical Journal Supplement Series, 2019, 241(2): 15 doi: 10.3847/1538-4365/ab0649
    [63]
    HUANG Z H, ZHANG Q H, XIA L D, et al. Population of bright plume threads in solar polar coronal holes[J]. Solar Physics, 2021, 296(1): 22 doi: 10.1007/s11207-021-01773-w
    [64]
    何建森, 涂传诒. 太阳风的加热与加速[J]. 中国科学: 地球科学, 2013, 43(6): 990-1001 doi: 10.1360/zd-2013-43-6-990

    HE Jiansen, TU Chuanyi. Heating and acceleration of solar wind[J]. Scientia Sinica Terrae, 2013, 43(6): 990-1001 doi: 10.1360/zd-2013-43-6-990
    [65]
    SAKAO T, KANO R, NARUKAGE N, et al. Continuous plasma outflows from the edge of a solar active region as a possible source of solar wind[J]. Science, 2007, 318(5856): 1585-1588 doi: 10.1126/science.1147292
    [66]
    LINKER J A, CAPLAN R M, DOWNS C, et al. The open flux problem[J]. The Astrophysical Journal, 2017, 848(1): 70 doi: 10.3847/1538-4357/aa8a70
    [67]
    FISK L A, SCHWADRON N A. The behavior of the open magnetic field of the sun[J]. The Astrophysical Journal, 2001, 560(1): 425-438 doi: 10.1086/322503
    [68]
    XIONG M, DAVIES J A, LI B, et al. Prospective out-of-ecliptic white-light imaging of interplanetary corotating interaction regions at solar maximum[J]. The Astrophysical Journal, 2017, 844: 76 doi: 10.3847/1538-4357/aa7aaa
    [69]
    刘振兴. 地球空间双星探测计划[J]. 地球物理学报, 2001, 44(4): 573-580 doi: 10.3321/j.issn:0001-5733.2001.04.016

    LIU Zhenxing. Geospace double star exploration project[J]. Chinese Journal of Geophysics, 2001, 44(4): 573-580 doi: 10.3321/j.issn:0001-5733.2001.04.016
    [70]
    甘为群, 颜毅华, 黄宇, 等. 2016-2030年我国空间太阳物理发展的若干思考[J]. 中国科学: 物理学 力学 天文学, 2019, 49(5): 059602

    GAN Weiqun, YAN Yihua, HUANG Yu, et al. Prospect for space solar physics in 2016–2030[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2019, 49(5): 059602
    [71]
    FENG X S. Magnetohydrodynamic Modeling of the Solar Corona and Heliosphere[M]. Singapore: Springer, 2020
    [72]
    LI H C, FENG X S. CESE-HLL magnetic field-driven modeling of the background solar wind during year 2008[J]. Journal of Geophysical Research: Space Physics, 2018, 123(6): 4488-4509 doi: 10.1029/2017JA025125
    [73]
    DEFOREST C, KILLOUGH R, GIBSON S, et al. Polarimeter to UNify the Corona and Heliosphere (PUNCH): Science, Status, and Path to Flight[C]// 2022 IEEE Aerospace Conference. Big Sky: IEEE, 2022: 1-11
    [74]
    WANG C, BRANDUARDI-RAYMOND G. Progress of solar wind magnetosphere ionosphere link explorer (SMILE) mission[J]. Chinese Journal of Space Science, 2018, 38(5): 657-661 doi: 10.11728/cjss2018.05.657
    [75]
    LAVRAUD B, LIU Y, SEGURA K, et al. A small mission concept to the Sun-Earth Lsagrangian L5 point for innovative solar, heliospheric and space weather science[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2016, 146: 171-185 doi: 10.1016/j.jastp.2016.06.004
    [76]
    WANG Y M, BAI X Y, CHEN C Y, et al. Solar ring mission: building a panorama of the Sun and inner-heliosphere[J]. Advances in Space Research, 2023, 71(1): 1146-1164 doi: 10.1016/j.asr.2022.10.045
    [77]
    杨孟飞, 汪景琇, 王赤, 等. 太阳立体探测任务设想[J]. 科学通报, 2023, 68(8): 859-871 doi: 10.1360/TB-2022-0706

    YANG Mengfei, WANG Jingxiu, WANG Chi, et al. Envisioning the solar stereo exploration mission[J]. Chinese Science Bulletin, 2023, 68(8): 859-871 doi: 10.1360/TB-2022-0706
    [78]
    林隽, 黄善杰, 李燕, 等. 太阳爆发抵近探测——“触碰计划”[J]. 空间科学学报, 2021, 41(2): 183-210 doi: 10.11728/cjss2021.02.183

    LIN Jun, HUANG Shanjie, LI Yan, et al. In situ detection of the solar eruption: lay a finger on the sun[J]. Chinese Journal of Space Science, 2021, 41(2): 183-210 doi: 10.11728/cjss2021.02.183
    [79]
    邓元勇, 周桂萍, 代树武, 等. 太阳极轨天文台[J]. 科学通报, 2023, 68(4): 298-308 doi: 10.1360/TB-2022-0674

    DENG Yuanyong, ZHOU Guiping, DAI Shuwu, et al. Solar polar-orbit observatory[J]. Chinese Science Bulletin, 2023, 68(4): 298-308 doi: 10.1360/TB-2022-0674
    [80]
    田晖, 白先勇, 邓元勇, 等. 晚型恒星极紫外和X射线探测的科学目标与初步方案[J]. 中国科学: 物理学 力学 天文学, 2022, 52(11): 119511

    TIAN Hui, BAI Xianyong, DENG Yuanyong, et al. Scientific objectives and preliminary plans for EUV and X-ray observations of late-type stars[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2022, 52(11): 119511
    [81]
    傅绥燕, 徐寄遥, 魏勇, 等. 探索中前行——中国空间物理研究70年[J]. 中国科学: 地球科学, 2019, 49(10): 1641-1658 doi: 10.1360/SSTe-2019-0131

    FU Suiyan, XU Jiyao, WEI Yong, et al. Seventy years of space physics research in China[J]. Scientia Sinica Terrae, 2019, 49(10): 1641-1658 doi: 10.1360/SSTe-2019-0131
    [82]
    HARRA L, ANDRETTA V, APPOURCHAUX T, et al. A journey of exploration to the polar regions of a star: probing the solar poles and the heliosphere from high Helio-latitude[J]. Experimental Astronomy, 2022, 54(2/3): 157-183
    [83]
    APPOURCHAUX T, LIEWER P, WATT M, et al. POLAR investigation of the sun POLARIS[J]. Experimental Astronomy, 2009, 23(3): 1079-1117 doi: 10.1007/s10686-008-9107-8
    [84]
    WU J, SUN W Y, ZHENG J H, et al. Imaging interplanetary CMEs at radio frequency from solar polar orbit[J]. Advances in Space Research, 2011, 48(5): 943-954 doi: 10.1016/j.asr.2011.05.001
    [85]
    XIONG M, LIU Y, LIU H, et al. Overview of the solar polar orbit telescope project for space weather mission[J]. Chinese Journal of Space Science, 2016, 36(3): 245-266 doi: 10.11728/cjss2016.03.245
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(5)

    Article Metrics

    Article Views(764) PDF Downloads(131) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return