| Citation: | BAI Xianyong, TIAN Hui, DENG Yuanyong, CHEN Yajie, HOU Zhenyong, YANG Zihao, ZHANG Zhiyong, DUAN Wei, LI Wenxian, GUO Sifan. Current Status and Future Perspectives of Solar Spectroscopic Observations at Extreme Ultraviolet Wavelengths (in Chinese). Chinese Journal of Space Science, 2023, 43(3): 406-422 doi: 10.11728/cjss2023.03.220125010 |
| [1] |
TOUSEY R. Solar spectroscopy from Rowland to SOT[J]. Vistas in Astronomy, 1986, 29: 175-199 doi: 10.1016/0083-6656(86)90007-3
|
| [2] |
LINSKY J L, FONTENLA J, FRANCE K. The intrinsic extreme ultraviolet fluxes of F5 V to M5 V stars[J]. The Astrophysical Journal Letters, 2013, 780(1): 61 doi: 10.1088/0004-637X/780/1/61
|
| [3] |
BROOKS D H, YARDLEY S L. The source of the major solar energetic particle events from super active region 11944[J]. Science Advances, 2021, 7(10): eabf0068 doi: 10.1126/sciadv.abf0068
|
| [4] |
CHEN Y J, LI W X, TIAN H, et al. Forward modeling of solar coronal magnetic-field measurements based on a magnetic-field-induced transition in Fe X[J]. The Astrophysical Journal Letters, 2021, 920(2): 116 doi: 10.3847/1538-4357/ac1792
|
| [5] |
LANDI E, HUTTON R, BRAGE T, et al. Hinode/EIS measurements of active-region magnetic fields[J]. The Astrophysical Journal Letters, 2020, 904(2): 87 doi: 10.3847/1538-4357/abbf54
|
| [6] |
MASON J P, WOODS T N, WEBB D F, et al. Relationship of EUV irradiance coronal dimming slope and depth to coronal mass ejection speed and mass[J]. The Astrophysical Journal Letters, 2016, 830(1): 20 doi: 10.3847/0004-637X/830/1/20
|
| [7] |
ASCHWANDEN M J, WUELSER J P, NITTA N V, et al. Solar flare and CME observations with STEREO/EUVI[J]. Solar Physics, 2009, 256(1): 3-40
|
| [8] |
ZHANG J, TEMMER M, GOPALSWAMY N, et al. Earth-affecting solar transients: A review of progresses in solar cycle 24[J]. Progress in Earth and Planetary Science, 2021, 8(1): 1-102 doi: 10.1186/s40645-020-00388-2
|
| [9] |
TORIUMI S, AIRAPETIAN V S, HUDSON H S, et al. Sun-as-a-star spectral irradiance observations of transiting active regions[J]. The Astrophysical Journal Letters, 2020, 902(1): 36 doi: 10.3847/1538-4357/abadf9
|
| [10] |
LI C, FANG C, LI Z, et al. Chinese Hα Solar Explorer (CHASE) - a complementary space mission to the ASO-S[J]. Research in Astronomy and Astrophysics, 2019, 19(11): 165 doi: 10.1088/1674-4527/19/11/165
|
| [11] |
GAN W Q, DING M D, HUANG Y, et al. Preface: Advanced space-based solar observatory (ASO-S)[J]. Research in Astronomy and Astrophysics, 2019, 19(11): 155 doi: 10.1088/1674-4527/19/11/155
|
| [12] |
ZHANG P, HU X Q, LU Q F, et al. FY-3 E: The first operational meteorological satellite mission in an early morning orbit[J]. Advances in Atmospheric Sciences, 2022, 39(1): 1-8 doi: 10.1007/s00376-021-1304-7
|
| [13] |
BAI X, TIAN H, DENG Y, et al. The solar upper transition region imager (SUTRI) onboard the SATech-01 satellite[EB/OL]. 2023: arXiv: 2303.03669. https://arxiv.org/abs/2303.03669
|
| [14] |
WINDT D L. EUV multilayer coatings for solar imaging and spectroscopy[C]//SPIE Optical Engineering + Applications. California: SPIE, 2015, 9604: 161-172
|
| [15] |
VOURLIDAS A, BRUINSMA S. EUV irradiance inputs to thermospheric density models: Open issues and path forward[J]. Space Weather, 2018, 16(1): 5-15 doi: 10.1002/2017SW001725
|
| [16] |
BEHRING W E. A spectrometer for observations of the solar extreme ultraviolet from the OSO-I satellite[J]. Applied Optics, 1970, 9(5): 1006-1013 doi: 10.1364/AO.9.001006
|
| [17] |
HINTEREGGER H E, HALL L A. Solar extreme ultraviolet emissions in the range 260-1300 Å observed from OSO-III[J]. Solar Physics, 1969, 6(2): 175-182 doi: 10.1007/BF00150942
|
| [18] |
KASTNER S O, NEUPERT W M, SWARTZ M. Solar-flare emission lines in the range from 66 to 171 Å; transitions in highly ionized iron[J]. The Astrophysical Journal Letters, 1974, 191: 261 doi: 10.1086/152963
|
| [19] |
SCHMIDTKE G, RAWER K, BOTZEK H, et al. Solar EUV photon fluxes measured aboard Aeros A[J]. Journal of Geophysical Research, 1977, 82(16): 2423-2427 doi: 10.1029/JA082i016p02423
|
| [20] |
HINTEREGGER H E, BEDO D E, MANSON J E. The EUV spectrophotometer on atmosphere explorer[J]. Radio Science, 1973, 8(4): 349-359 doi: 10.1029/RS008i004p00349
|
| [21] |
ROTTMAN G J, WOODS T N. Upper atmosphere research satellite (UARS) solar stellar irradiance comparison experiment (SOLSTICE)[C]//SPIE’s 1994 International Symposium on Optics, Imaging, and Instrumentation. San Diego: SPIE 1994, 2266: 317-327
|
| [22] |
WOODS T N, ROTTMAN G, VEST R. XUV photometer system (XPS): Overview and calibrations[J]. Solar Physics, 2005, 230(1): 345-374
|
| [23] |
WOODS T N, ROTTMAN G J, ROBLE R G, et al. Thermosphere-ionsphere-mesosphere energetics and dynamics (TIMED) solar EUV experiment[C]//SPIE’s 1994 International Symposium on Optics, Imaging, and Instrumentation. San Diego: SPIE, 1994, 2266: 467-478
|
| [24] |
NUSINOV A A, KAZACHEVSKAYA T V, KATYUSHINA V V, et al. Measurement of extreme ultraviolet solar radiation in different wavelength intervals onboard the CORONAS satellites: Instruments and main results[J]. Solar System Research, 2005, 39(6): 470-478 doi: 10.1007/s11208-005-0060-z
|
| [25] |
AVAKYAN S V, BARANOVA L A, LEONOV N B, et al. Space Solar Patrol data and changes in weather and climate, including global warming[J]. Measurement Science and Technology, 2010, 21(8): 085301 doi: 10.1088/0957-0233/21/8/085301
|
| [26] |
JUDGE D L, MCMULLIN D R, OGAWA H S, et al. First Solar EUV Irradiances Obtained from SOHO by the CELIAS/SEM[M]//Solar Electromagnetic Radiation Study for Solar Cycle 22. Dordrecht: Springer Netherlands, 1998: 161-173
|
| [27] |
SCHMIDTKE G, BRUNNER R, EBERHARD D, et al. SOL-ACES: Auto-calibrating EUV/UV spectrometers for measurements onboard the international space station[J]. Advances in Space Research, 2006, 37(2): 273-282 doi: 10.1016/j.asr.2005.01.112
|
| [28] |
EPARVIER F G, CROTSER D, JONES A R, et al. The extreme ultraviolet sensor (EUVS) for GOES-R[C]//SPIE Optical Engineering + Applications. San Diego, California: SPIE, 2009, 7438: 31-38
|
| [29] |
WOODS T N, EPARVIER F G, HOCK R, et al. Extreme ultraviolet variability experiment (EVE) on the solar dynamics observatory (SDO): Overview of science objectives, instrument design, data products, and model developments[J]. Solar Physics, 2012, 275(1/2): 115-143
|
| [30] |
DOMINIQUE M, HOCHEDEZ J F, SCHMUTZ W, et al. The LYRA instrument onboard PROBA2: Description and In-flight performance[J]. Solar Physics, 2013, 286(1): 21-42 doi: 10.1007/s11207-013-0252-5
|
| [31] |
WANG H F, WANG X D, CHEN B, et al. EUV multilayer mirrors in solar X-EUV Imager[J]. Optik, 2020, 204: 164213 doi: 10.1016/j.ijleo.2020.164213
|
| [32] |
MASON J P, WOODS T N, CASPI A, et al. Mechanisms and observations of coronal dimming for the 2010 August 7 event[J]. The Astrophysical Journal Letters, 2014, 789(1): 61 doi: 10.1088/0004-637X/789/1/61
|
| [33] |
HARRA L K, SCHRIJVER C J, JANVIER M, et al. The characteristics of solar X-class flares and CMEs: A paradigm for stellar superflares and eruptions[J]. Solar Physics, 2016, 291(6): 1761-1782 doi: 10.1007/s11207-016-0923-0
|
| [34] |
FRANCE K, FLEMING B T, DRAKE J J, et al. The extreme-ultraviolet stellar characterization for atmospheric physics and evolution (ESCAPE) mission concept[C]//SPIE Optical Engineering + Applications. San Diego, California: SPIE, 2019, 11118: 38-51
|
| [35] |
田晖, 白先勇, 邓元勇, 等. 晚型恒星极紫外和X射线探测的科学目标与初步方案[J]. 中国科学: 物理学 力学 天文学, 2022, 52(11): 119511
TIAN Hui, BAI Xianyong, DENG Yuanyong, et al. Scientific objectives and preliminary plans for EUV and X-ray observations of late-type stars[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2022, 52(11): 119511
|
| [36] |
DEL ZANNA G, MASON H E. Solar UV and X-ray spectral diagnostics[J]. Living Reviews in Solar Physics, 2018, 15(1): 5 doi: 10.1007/s41116-018-0015-3
|
| [37] |
TOUSEY R, D F BARTOE J, BRUECKNER G E, et al. Extreme ultraviolet spectroheliograph ATM experiment S082 A[J]. Applied Optics, 1977, 16(4): 870-878 doi: 10.1364/AO.16.000870
|
| [38] |
WILHELM K, CURDT W, MARSCH E, et al. SUMER - solar ultraviolet measurements of emitted radiation[J]. Solar Physics, 1995, 162(1/2): 189-231
|
| [39] |
HARRISON R A, SAWYER E C, CARTER M K, et al. The Coronal Diagnostic Spectrometer for the solar and heliospheric observatory[J]. Solar Physics, 1995, 162(1): 233-290
|
| [40] |
CULHANE J L, HARRA L K, JAMES A M, et al. The EUV imaging spectrometer for hinode[J]. Solar Physics, 2007, 243(1): 19-61 doi: 10.1007/s01007-007-0293-1
|
| [41] |
SPICE Consortium. The solar orbiter SPICE instrument. An extreme UV imaging spectrometer[J]. Astronomy & Astrophysics, 2020, 642: A14
|
| [42] |
DELABOUDINIÈRE J P, ARTZNER G E, BRUNAUD J, et al. EIT: Extreme-ultraviolet imaging telescope for the SOHO mission[J]. Solar Physics, 1995, 162(1): 291-312
|
| [43] |
HANDY B N, ACTON L W, KANKELBORG C C, et al. The transition region and coronal explorer[J]. Solar Physics, 1999, 187(2): 229-260 doi: 10.1023/A:1005166902804
|
| [44] |
PETER H, JUDGE P G. On the Doppler shifts of solar ultraviolet emission lines[J]. The Astrophysical Journal Letters, 1999, 522(2): 1148-1166 doi: 10.1086/307672
|
| [45] |
XIA L D, MARSCH E, WILHELM K. On the network structures in solar equatorial coronal holes[J]. Astronomy & Astrophysics, 2004, 424(3): 1025-1037
|
| [46] |
TIAN H, HARRA L, BAKER D, et al. Upflows in the upper solar atmosphere[J]. Solar Physics, 2021, 296(3): 1-36
|
| [47] |
TIAN H. Probing the solar transition region: Current status and future perspectives[J]. Research in Astronomy and Astrophysics, 2017, 17(11): 110 doi: 10.1088/1674-4527/17/11/110
|
| [48] |
TU C Y, ZHOU C, MARSCH E, et al. Solar wind origin in coronal funnels[J]. Science, 2005, 308(5721): 519-523 doi: 10.1126/science.1109447
|
| [49] |
HASSLER D M, DAMMASCH I E, LEMAIRE P, et al. Solar wind outflow and the chromospheric magnetic network[J]. Science, 1999, 283(5403): 810-813 doi: 10.1126/science.283.5403.810
|
| [50] |
INNES D E, INHESTER B, AXFORD W I, et al. Bi-directional plasma jets produced by magnetic reconnection on the Sun[J]. Nature, 1997, 386(6627): 811-813 doi: 10.1038/386811a0
|
| [51] |
HARRA L K, SAKAO T, MANDRINI C H, et al. Outflows at the edges of active regions: Contribution to solar wind formation?[J]. The Astrophysical Journal Letters, 2008, 676(2): L147-L150 doi: 10.1086/587485
|
| [52] |
BROOKS D H, UGARTE-URRA I, WARREN H P. Full-Sun observations for identifying the source of the slow solar wind[J]. Nature Communications, 2015, 6: 5947 doi: 10.1038/ncomms6947
|
| [53] |
DE PONTIEU B, MCINTOSH S W, CARLSSON M, et al. The origins of hot plasma in the solar corona[J]. Science, 2011, 331(6013): 55-58 doi: 10.1126/science.1197738
|
| [54] |
TIAN H, MCINTOSH S W, XIA L D, et al. What can we learn about solar coronal mass ejections, coronal dimmings, and extreme-ultraviolet jets through spectroscopic observations?[J]. The Astrophysical Journal Letters, 2012, 748(2): 106 doi: 10.1088/0004-637X/748/2/106
|
| [55] |
LEWIS FOX J, KANKELBORG C C, THOMAS R J. A transition region explosive event observed in he ii with the Moses sounding rocket[J]. The Astrophysical Journal Letters, 2010, 719(2): 1132-1143 doi: 10.1088/0004-637X/719/2/1132
|
| [56] |
LEWIS FOX J. Snapshot imaging spectroscopy of the solar transition region: The Multi-Order Solar EUV Spectrograph (MOSES) sounding rocket mission[D]. Bozeman, MT, USA: Montana State University, 2011
|
| [57] |
LAURENT G T, HASSLER D M, DEFOREST C, et al. The rapid acquisition imaging spectrograph experiment (RAISE) sounding rocket investigation[J]. Journal of Astronomical Instrumentation, 2016, 5(1): 1640006 doi: 10.1142/S2251171716400067
|
| [58] |
DE PONTIEU B, TESTA P, MARTÍNEZ-SYKORA J, et al. Probing the physics of the solar atmosphere with the multi-slit solar explorer (MUSE). I. coronal heating[J]. The Astrophysical Journal Letters, 2022, 926(1): 52 doi: 10.3847/1538-4357/ac4222
|
| [59] |
CHEUNG M C M, MARTINEZ-SYKORA J, TESTA P, et al. Probing the physics of the solar atmosphere with the Multi-slit Solar Explorer (MUSE). II. Flares and Eruptions[J]. Astrophysical Journal, 2022, 926(1): 32 doi: 10.3847/1538-4357/ac4223
|
| [60] |
YOUNG PETER R. Future prospects for solar EUV and soft X-ray spectroscopy Missions[J]. Frontiers in Astronomy and Space Sciences, 2021, 8: 662790 doi: 10.3389/fspas.2021.662790
|
| [61] |
SHIMIZU T, IMADA S, KAWATE T, et al. The solar-C_EUVST mission[C]//Proceedings of SPIE 11118, UV, X-Ray, and Gamma-Ray Space Instrumentation for Astronomy XXI. San Diego: SPIE, 2019: 1111807-11
|
| [62] |
DE PONTIEU B, MARTÍNEZ-SYKORA J, TESTA P, et al. The multi-slit approach to coronal spectroscopy with the multi-slit solar explorer (MUSE)[J]. The Astrophysical Journal Letters, 2020, 888(1): 3 doi: 10.3847/1538-4357/ab5b03
|
| [63] |
WINEBARGER A R, WEBER M, BETHGE C, et al. Unfolding overlapped slitless imaging spectrometer data for extended sources[J]. The Astrophysical Journal Letters, 2019, 882(1): 12 doi: 10.3847/1538-4357/ab21db
|
| [64] |
YANG Z H, BETHGE C, TIAN H, et al. Global maps of the magnetic field in the solar corona[J]. Science, 2020, 369(6504): 694-697 doi: 10.1126/science.abb4462
|
| [65] |
YANG Z H, TIAN H, TOMCZYK S, et al. Mapping the magnetic field in the solar corona through magnetoseismology[J]. Science China Technological Sciences, 2020, 63(11): 2357-2368 doi: 10.1007/s11431-020-1706-9
|
| [66] |
邓元勇, 甘为群, 颜毅华, 等. 太阳磁场探测现状与展望[J]. 红外与激光工程, 2020, 49(11): 3788/IRLA20200278
DENG Yuanyong, GAN Weiqun, YAN Yihua, et al. Current situation and prospect of solar magnetic field exploration[J]. Infrared and Laser Engineering, 2020, 49(11): 3788/IRLA20200278
|
| [67] |
YAN Y H, TAN B L, MELNIKOV V, et al. Diagnosing coronal magnetic fields with radio imaging-spectroscopy technique[J]. Proceedings of the International Astronomical Union, 2019, 15(S354): 17-23 doi: 10.1017/S1743921320000629
|
| [68] |
YANG Z, TIAN H, BAI X, et al. Can we detect coronal mass ejections through asymmetries of Sun-as-a-star extreme-ultraviolet spectral line profiles? [EB/OL]. 2022: arXiv: 2204.03683. https://arxiv.org/abs/2204.03683
|
| [69] |
LI W X, GRUMER J, YANG Y, et al. A novel method to determine magnetic fields in low-density plasma facilitated through accidental degeneracy of quantum states in Fe9+[J]. The Astrophysical Journal Letters, 2015, 807(1): 69 doi: 10.1088/0004-637X/807/1/69
|
| [70] |
LI W X, YANG Y, TU B S, et al. Atomic-level pseudo-degeneracy of atomic levels giving transitions induced by magnetic fields, of importance for determining the field strengths in the solar corona[J]. The Astrophysical Journal Letters, 2016, 826(2): 219 doi: 10.3847/0004-637X/826/2/219
|
| [71] |
SI R, BRAGE T, LI W X, et al. A first spectroscopic measurement of the magnetic-field strength for an active region of the solar corona[J]. The Astrophysical Journal Letters, 2020, 898(2): L34 doi: 10.3847/2041-8213/aba18c
|
| [72] |
WU J L, QI R Z, WANG Z S, et al. Structure and stability of Sc/Si multilayers with different thickness ratio for wavelength at 46.5 nm[C]//SPIE Optical Engineering + Applications. Online Only: SPIE, 2020, 11491: 9-14
|