Volume 43 Issue 3
Jul.  2023
Turn off MathJax
Article Contents
HAO Mengtan, ZHANG Shenyi, HOU Donghui, SHEN Guohong, ZHANG Huanxin, SU Bo, BAI Chaoping, SUN Ying, ZHOU Ping, JI Wentao. Calibration of the Medium Energy Proton Detector of FY-3E (in Chinese). Chinese Journal of Space Science, 2023, 43(3): 558-566 doi: 10.11728/cjss2023.03.220329033
Citation: HAO Mengtan, ZHANG Shenyi, HOU Donghui, SHEN Guohong, ZHANG Huanxin, SU Bo, BAI Chaoping, SUN Ying, ZHOU Ping, JI Wentao. Calibration of the Medium Energy Proton Detector of FY-3E (in Chinese). Chinese Journal of Space Science, 2023, 43(3): 558-566 doi: 10.11728/cjss2023.03.220329033

Calibration of the Medium Energy Proton Detector of FY-3E

doi: 10.11728/cjss2023.03.220329033 cstr: 32142.14.cjss2023.03.220329033
  • Received Date: 2022-03-28
  • Accepted Date: 2022-05-11
  • Rev Recd Date: 2022-10-18
  • Available Online: 2023-03-30
  • FY-3E is the first satellite among the FY-3 series that has observed protons with medium energy in multiple directions. The medium energy proton detector can measure the energy spectrum of protons with the energy range of 0.03~5 MeV in nine directions. In order to determine the actual performance of the medium energy proton detector, before the instrument delivered, the energy resolution, relative response efficiency curve, measurement consistency of probes in different directions, and anti-electron pollution ability of the medium energy proton detector were calibrated using the medium and high-energy electron accelerator of the National Space Science Center of the Chinese Academy of Sciences. This paper introduces the calibration site and contents of the instrument, and analyzes the calibration results. The results show that the energy resolution of the instrument is 6.50% @ 310 keV, the consistency deviation of each measurement is better than 1.51%, and the probability of electronic pollution counting in the instrument is less than 1%.The results provide an important reference for the analysis and processing of the data of the intermediate-energy proton detector in orbit.

     

  • loading
  • [1]
    中国科学院空间科学与应用研究中心. 宇航空间环境手册[M]. 北京: 中国科学技术出版社, 2000

    Space Science and Application Research Center, Chinese Academy of Sciences. Aerospace Space Environment Manual[M]. Beijing: China Science and Technology Press, 2000
    [2]
    都亨, 叶宗海. 低轨道航天器空间环境手册[M]. 北京: 国防工业出版社, 1996

    DU Heng, YE Zonghai. Space Environment Manual for Low-orbit Spacecraft[M]. Beijing: National Defense Industry Press, 1996
    [3]
    BLAKE J B, FENNELL J F, FRIESEN L M, et al. CEPPAD: comprehensive energetic particle and pitch angle distribution experiment on POLAR[J]. Space Science Reviews, 1995, 71(1): 531-562
    [4]
    YANDO K, MILLAN R M, GREEN J C, et al. A Monte Carlo simulation of the NOAA POES medium energy proton and electron detector instrument[J]. Journal of Geophysical Research, 2011, 116(A10): A10231
    [5]
    RODRIGUEZ J V, DENTON M H, HENDERSON M G. On-orbit calibration of geostationary electron and proton flux observations for augmentation of an existing empirical radiation model[J]. Journal of Space Weather and Space Climate, 2020, 10: 28 doi: 10.1051/swsc/2020031
    [6]
    KRESS B T, RODRIGUEZ J V, ONSAGER T G. The GOES-R space environment in situ suite (SEISS): measurement of energetic particles in geospace[M]//GOODMAN S J, SCHMIT T J, DANIELS J, et al. The GOES-R Series. Amsterdam: Elsevier, 2020: 243-250
    [7]
    ASIKAINEN T, MURSULA K. Recalibration of the long-term NOAA/MEPED energetic proton measurements[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2011, 73(2/3): 335-347
    [8]
    WISSING J M, BORNEBUSCH J P, KALLENRODE M B. Variation of energetic particle precipitation with local magnetic time[J]. Advances in Space Research, 2008, 41(8): 1274-1278 doi: 10.1016/j.asr.2007.05.063
    [9]
    SØRAAS F, AARSNES K, OKSAVIK K, et al. Evidence for particle injection as the cause of Dst reduction during HILDCAA events[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2004, 66(2): 177-186 doi: 10.1016/j.jastp.2003.05.001
    [10]
    LEMAIRE J F, HEYNDERICKX D, BAKER D N. Radiation Belts: Models and Standards[M]. Washington: American Geophysical Union, 1996: 79-91
    [11]
    李肖, 张珅毅, 张伟杰. 反符合杯测量技术在空间中的应用[J]. 核电子学与探测技术, 2015, 35(6): 566-570 doi: 10.3969/j.issn.0258-0934.2015.06.010

    LI Xiao, ZHANG Shenyi, ZHANG Weijie. The application of anti-coincidence detective cup technology in space[J]. Nuclear Electronics & Detection Technology, 2015, 35(6): 566-570 doi: 10.3969/j.issn.0258-0934.2015.06.010
    [12]
    ROLF P. Developments and Numerical Simulations for the Electron-Proton-Telescope Onboard Solar Orbiter[D]. Kiel: Kiel University, 2012
    [13]
    侯东辉, 张珅毅, 张效信, 等. 空间高能电子探测器准直仪的设计研究[J]. 真空科学与技术学报, 2020, 40(10): 965-970 doi: 10.13922/j.cnki.cjovst.2020.10.13

    HOU Donghui, ZHANG Shenyi, ZHANG Xiaoxin, et al. Design optimization of novel collimator for detector of space high energy electron: a simulation study[J]. Chinese Journal of Vacuum Science and Technology, 2020, 40(10): 965-970 doi: 10.13922/j.cnki.cjovst.2020.10.13
    [14]
    ZHANG S Y, ZHANG X G, WANG C Q, et al. The geometric factor of high energy protons detector on FY-3 satellite[J]. Science China Earth Sciences, 2014, 57(10): 2558-2566 doi: 10.1007/s11430-014-4853-0
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(4)

    Article Metrics

    Article Views(350) PDF Downloads(35) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return