Volume 44 Issue 3
Jun.  2024
Turn off MathJax
Article Contents
CHAI Lihui, GUO Mengdan, TANG Xiaozhun. Large-scale Plasma Vortex in the Magnetotail of Venus (in Chinese). Chinese Journal of Space Science, 2024, 44(3): 500-510 doi: 10.11728/cjss2024.03.2023-0057
Citation: CHAI Lihui, GUO Mengdan, TANG Xiaozhun. Large-scale Plasma Vortex in the Magnetotail of Venus (in Chinese). Chinese Journal of Space Science, 2024, 44(3): 500-510 doi: 10.11728/cjss2024.03.2023-0057

Large-scale Plasma Vortex in the Magnetotail of Venus

doi: 10.11728/cjss2024.03.2023-0057 cstr: 32142.14.cjss2024.03.2023-0057
  • Received Date: 2023-05-27
  • Rev Recd Date: 2023-10-04
  • Available Online: 2023-12-04
  • Using the observations by the Analyzer of Space Plasmas and Energetic Atoms on Venus (ASPERA-4) onboard Venus Express, Previous studies found A large-scale plasma vortices of solar wind hydrogen ions (H+) and Venus ionospheric oxygen ions (O+) in the magnetotail of Venus. The vortex is counterclockwise when viewed from the tail towards the planet. We conducted a statistical analysis of the ASPERA-4 moment data calibrated by Fedorov to investigate the plasma characteristics in Venusian magnetotail. The statistical results showed that there are large-scale vortices of the solar wind H+ and Venus ionospheric O+ in both the Venus-Solar-Orbital (VSO) and Venus-Solar-Electrical (VSE) coordinate systems, but there are clockwise. Considering that neither counterclockwise nor clockwise plasma vortices can generate a magnetic field consistent with the observed magnetic structure in the Venusian magnetotail, and no complete plasma vortex is observed in the Mars magnetotail with a magnetic structure similar to that of Venusian magnetotail, concluded that there may not be large-scale plasma vortices in the Venusian magnetotail, and that more satellite observations are needed in the future to investigate the plasma characteristics on Venus.

     

  • loading
  • [1]
    RUSSELL C T, ELPHIC R C, SLAVIN J A. Initial Pioneer Venus Magnetic Field Results: Nightside Observations[J]. Science, 1979, 205: 114-116 doi: 10.1126/science.205.4401.114
    [2]
    LUHMANN J G, LEDVINA S A, RUSSELL C T. Induced magnetospheres[J]. Advances in Space Research, 2004, 33: 1905-1912 doi: 10.1016/j.asr.2003.03.031
    [3]
    BARABASH S, FEDOROV A, SAUVAUD J J, et al. The loss of ions from Venus through the plasma wake[J]. Nature, 2007, 450: 650-653 doi: 10.1038/nature06434
    [4]
    MARTINECZ C, FRÄNZ M, WOCH J, et al. Location of the bow shock and ion composition boundaries at Venus - initial determinations from Venus Express ASPERA-4[J]. Planetary & Space Science, 2008, 56(6): 780-784
    [5]
    SMREKAR, SUZANNE E, ELLEN R S, et al. Venus: Surface and Interior[M]//Encyclopedia of the Solar System. 3rd. Boston: Elsevier, 2014: 323-341
    [6]
    GRINGAUZ K I, BEZRUKIKH V V, BREUS T K, et al. Plasma observations near Venus onboard the Venera 9 and 10 satellites by means of wide-angle plasma detectors[J]. Proceedings of the International Symposium on Solar‐Terrestrial Physics, 1976: 918-932
    [7]
    KELDYSH M V. Venus exploration with the Venera 9 and Venera 10 spacecraft[J]. Icarus, 1977, 30(4): 605-625 doi: 10.1016/0019-1035(77)90085-9
    [8]
    DOLGINOV S S. Magnetic fields in the vicinity of Venus according to “Venera” and “Mariner” data[C]//Planetary Institute Topical Conference. Houston: the Lunar and Planetary Institute, 1978(348): 22
    [9]
    VERIGIN M I , GRINGAUZ K I , GOMBOSI T, et al. Plasma near Venus from the Venera-9 and 10 wide-angle analyzer data[J]. Journal of Geophysical Research Space Physics, 1978, 83(A8): 3721-3728
    [10]
    RUSSELL C T. The Pioneer Venus Mission[M]. Washington D C: American Geophysical Union, 1992: 225-236
    [11]
    RUSSELL C T, LUHMANN J G, STRANGEWAY R G. The solar wind interaction with Venus through the eyes of the pioneer Venus Orbiter[J]. Planetary and Space Science, 2006, 54: 1482-1495 doi: 10.1016/j.pss.2006.04.025
    [12]
    TITOV D V, SVEDHEM H, TAYLOR F W, et al. Venus Express: highlights of the nominal mission[J]. Solar System Research, 2009, 43(3): 185-209
    [13]
    LUHMANN J G, KOZYRA J U. Dayside pickup oxygen ion precipitation at Venus and Mars: spatial distributions, energy deposition and consequences[J]. Journal of Geophy sical Research Space Physics, 1991, 96: 5457-5467
    [14]
    VILLARREAL M N, RUSSELL C T, WEI H Y, et al. Characterizing the low-altitude magnetic belt at Venus: complementary observations from the Pioneer Venus Orbiter and Venus Express[J]. Journal of Geophysical Research Space Physics, 2015, 120(3): 2232-2240
    [15]
    RONG Z J, BARABASH S, FUTAANA Y, et al. Morphology of magnetic field in near-Venus magnetotail: Venus Express observations[J]. Journal of Geophysical Research Space Physics, 2014, 119(11): 8838-47 doi: 10.1002/2014JA020461
    [16]
    DUBININ E, FRAENZ M, ZHANG T L, et al. Plasma in the near Venus tail: Venus Express observations[J]. Jour nal of Geophysical Research: Space Physics, 2013, 118(12): 7624-7634
    [17]
    ZHANG T L, LU Q M, BAUMJOHANN W, et al. Magnetic reconnection in the near Venusian magnetotail[J]. Science, 2012, 336: 567-70 doi: 10.1126/science.1217013
    [18]
    LUNDIN R, BARABASH S, FUTAANA Y, et al. A large-scale flow vortex in the Venus plasma tail and its fluid dynamic interpretation[J]. Geophysical Research Letters, 2013, 40(7): 1273-1278
    [19]
    PÉREZ-DE-TEJADA H, LUNDIN R. Solar cycle variations in the position of vortex structures in the Venus wake[J]. Solar System Planets and Exoplanets, 2021: 63-77. DOI:10.5772/intechopen.96710
    [20]
    DURAND-MANTEROLA HÉCTOR J, FLANDES A. Plasma vortices driven by magnetic torsion generated by electric currents in non-magnetic planetary wakes[J]. Advances in Space Research, 2022, 69(10): 3902-3908 doi: 10.1016/j.asr.2022.03.002
    [21]
    CHAI L H, WEI Y, WAN W, et al. An induced global magnetic field looping around the magnetotail of Venus[J]. Journal of Geophysical Research Space Physics, 2016, 121(1): 688-698 doi: 10.1002/2015JA021904
    [22]
    BARABASH S, SAUVAUD J A, GUNELL H, et al. The Analyser of Space Plasmas and Energetic Atoms (ASPERA-4) for the Venus Express Mission[J]. Planetary and Space Science, 2007, 55: 1772-1792 doi: 10.1016/j.pss.2007.01.014
    [23]
    ZHANG T L, BAUMJOHANN W, DELVA M, et al. Magnetic field investigation of the Venus plasma environment: expected new results from Venus Express[J]. Planetary and Space Science, 2006, 54: 1336-43 doi: 10.1016/j.pss.2006.04.018
    [24]
    CHAI L H, FRAENZ M, WAN W, et al. IMF control of the location of Venusian bow shock: the effect of the magnitude of IMF component tangential to the bow shock surface[J]. Journal of Geophysical Research Space Physics, 2014, 119(12): 9646-9475
    [25]
    CHAI L H, WAN W X, WEI Y, et al. The induced global looping magnetic field on Mars[J]. The Astrophysical Journal Letters, 2019, 871(2): L27 doi: 10.3847/2041-8213/aaff6e
    [26]
    DUBININ E, MODOLO R, FRAENZ M, et al. The induced magnetosphere of Mars: asymmetrical topology of the magnetic field lines[J]. Geophysical Research Letters, 2019, 46(22): 12722-12730 doi: 10.1029/2019GL084387
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article Views(365) PDF Downloads(145) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return