Volume 44 Issue 3
Jun.  2024
Turn off MathJax
Article Contents
LIU Zhiyong, LIU Sen, WANG Xi, ZHANG Shuiping. QX-1 GNOS M Radio Occultation Data Performance Analysis (in Chinese). Chinese Journal of Space Science, 2024, 44(3): 585-591 doi: 10.11728/cjss2024.03.2023-0071
Citation: LIU Zhiyong, LIU Sen, WANG Xi, ZHANG Shuiping. QX-1 GNOS M Radio Occultation Data Performance Analysis (in Chinese). Chinese Journal of Space Science, 2024, 44(3): 585-591 doi: 10.11728/cjss2024.03.2023-0071

QX-1 GNOS M Radio Occultation Data Performance Analysis

doi: 10.11728/cjss2024.03.2023-0071 cstr: 32142.14.cjss2024.03.2023-0071
  • Received Date: 2023-07-03
  • Accepted Date: 2024-05-13
  • Rev Recd Date: 2023-08-23
  • Available Online: 2023-09-25
  • QX-1 GNOS M is the first small commercial Global Navigation Satellite System (GNSS) occultation sounder to achieve on-orbit compatibility with BeiDou, GPS, and Galileo systems. On 14 October 2021, at 18:51 LT, the Meteorological Satellite-1 (QX-1) was launched and entered orbit. Since its launch, this satellite has collected a large amount of observational data. This paper provides a detailed introduction to the composition of QX-1 GNOS M and conducts a statistical analysis of the occultation events and their global distribution on 17 August 2022. By comparing the occultation data from 17 August to 3 September with the NCEP reanalysis model, the detection penetration depth and refractivity accuracy of QX-1 occultation events were evaluated, and the reliability and consistency of the Galileo occultation data were tested. Preliminary analysis results show that after achieving three-system compatibility, the number of occultation events detected by QX-1 GNOS M increased by approximately 1.5 times compared to using only the GPS system. This result further confirms that the occultation data provided by different GNSS systems are consistent in accuracy. Additionally, the study indicates that, in a multi-system compatibility context, QX-1 GNOS M can provide richer and more accurate meteorological and atmospheric data.

     

  • loading
  • [1]
    ROCKEN C, ANTHES R, EXNER M, et al. Analysis and validation of GPS/MET data in the neutral atmosphere[J]. Journal of Geophysical Research: Atmospheres, 1997, 102(D25): 29849-29866 doi: 10.1029/97JD02400
    [2]
    WICERT J, BEYERLE G, KONIG R, et al. GPS radio occultation with CHAMP and GRACE: A first look at a new and promising satellite configuration for global atmospheric sounding[J]. Annales Geophysicae: Atmospheres, Hydrospheres and Space Sciences, 2005, 23(3): 653-658
    [3]
    仇通胜. 基于北斗三号的无线电掩星接收机信号处理关键技术研究[D]. 北京: 中国科学院大学, 2021. DOI: 10.27562/d.cnki.gkyyz.2021.000015

    QIU Tongsheng. Study on Key Technique of Signal Processing for BDS-3 Based Radio Occultation Receiver[D]. Beijing: University of Chinese Academy of Sciences, 2021. DOI: 10.27562/d.cnki.gkyyz.2021.000015
    [4]
    ANTHES R A, BERNHARDT P A, CHEN Y, et al. The COSMIC/FORMOSAT-3 Mission: Early results[J]. Bulle tin of the American Meteorological Society, 2008, 89(3): 313-334 doi: 10.1175/BAMS-89-3-313
    [5]
    KUO Y H, SCHREINER W S, WANG J, et al. Comparison of GPS radio occultation soundings with radiosondes[J]. Geophysical Research Letters, 2005, 32(5). DOI: 10.1029/2004GL021443
    [6]
    SCHREINER W S, WEISS J P, ANTHES R A, et al. COSMIC‐2 radio occultation constellation: first results[J]. Geophysical Research Letters, 2020, 47(4): e2019GL086841 doi: 10.1029/2019GL086841
    [7]
    IURII C, IRINA Z, JOHN B, et al. Accuracy assessment of the quiet-time ionospheric F2 peak parameters as derived from COSMIC-2 multi-GNSS radio occultation measurements[J]. Journal of Space Weather and Space Climate, 2021, 11
    [8]
    LI Y, KIRCHENGAST G, SCHERLLIN-PIRSCHER B, et al. Dynamic statistical optimization of GNSS radio occultation bending angles: Advanced algorithm and performance analysis[J]. Atmospheric Measurement Techniques, 2015, 8(8): 3447-3465 doi: 10.5194/amt-8-3447-2015
    [9]
    BAI W H, SUN Y Q, DU Q F, et al. An introduction to the FY3 GNOS instrument and mountain-top tests[J]. Atmospheric Measurement Techniques, 2014, 7(6): 1817-1823 doi: 10.5194/amt-7-1817-2014
    [10]
    SUN Y Q, BAI W H, LIU C L, et al. The FengYun-3C radio occultation sounder GNOS: a review of the mission and its early results and science applications[J]. Atmospheric Measurement Techniques, 2018, 11(10): 5797-5811 doi: 10.5194/amt-11-5797-2018
    [11]
    WEI J D, LI Y ZHANG K F, et al. An evaluation of Fengyun-3C radio occultation atmospheric profiles over 2015-2018[J]. Remote Sensing, 2020, 12(13): 2116 doi: 10.3390/rs12132116
    [12]
    LIU Z Y, SUN Y Q, BAI W H, et al. Validation of preliminary results of thermal tropopause derived from FY-3C GNOS data[J]. Remote Sensing, 2019, 11(9): 1139 doi: 10.3390/rs11091139
    [13]
    王树志, 朱光武, 白伟华, 等. 风云三号C星全球导航卫星掩星探测仪首次实现北斗掩星探测[J]. 物理学报, 2015, 64(8): 089301 doi: 10.7498/aps.64.089301

    WANG Shuzhi, ZHU Guangwu, BAI Weihua, et al. For the first time Fengyun-3C satellite-global navigation satellite system occultation sounder achieved spaceborne BeiDou system radio occultation[J]. Acta Physica Sinica, 2015, 64(8): 089301 doi: 10.7498/aps.64.089301
    [14]
    LIAO M, ZHANG P, YANG G L, et al. Preliminary validation of the refractivity from the new radio occultation sounder GNOS/FY-3C[J]. Atmospheric Measurement Techniques, 2016, 9(2): 781-792 doi: 10.5194/amt-9-781-2016
    [15]
    廖蜜, 张鹏, 刘健, 等. 风云卫星的掩星干大气温度廓线精准度特征[J]. 应用气象学报, 2023, 34(3): 270-281

    LIAO Mi, ZHANG Peng, LIU Jian, et al. Accuracy and stability of radio occultation dry temperature profiles from Fengyun satellite[J]. Journal of Applied Meteorological Science, 2023, 34(3): 270-281
    [16]
    刘艳, 孟祥广, 白伟华, 等. FY-3D卫星的北斗掩星分布特征与误差特性[J]. 空间科学学报, 2022, 42(3): 476-484 doi: 10.11728/cjss2022.03.210208019

    LIU Yan, MENG Xiangguang, BAI Weihua, et al. Analysis of Beidou Radio Occultation Data from FY-3D Satellite[J]. Chinese Journal of Space Science, 2022, 42(3): 476-484 doi: 10.11728/cjss2022.03.210208019
    [17]
    HUANG F X, XIA J M, YIN C, et al. Assessment of FY-3E GNOS II GNSS-R global wind product[J]. IEEE Jour nal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 7899-7912. doi: 10.1109/JSTARS.2022.3205331
    [18]
    杨光林, 孙越强, 白伟华, 等. 风云三号C星GNOS北斗掩星电离层探测初步结果[J]. 空间科学学报, 2019, 39(1): 36-45 doi: 10.11728/cjss2019.01.036

    YANG Guanglin, SUN Yueqiang, BAI Weihua, et al. Beidou navigation satellite system sounding of the ionosphere from FY-3C GNOS: preliminary results[J]. Chinese Journal of Space Science, 2019, 39(1): 36-45 doi: 10.11728/cjss2019.01.036
    [19]
    DU Q F, SUN Y Q, BAI W H, et al. The on-orbit performance of FY-3D GNOS[C]//International Geoscience and Remote Sensing Symposium. Yokohama: IEEE, 2019: 7669-7671
    [20]
    ZHANG H, HUANGFU J, WANG X, et al. Comparative analysis of Binhu and Cosmic-2 radio occultation data[J]. Remote Sensing, 2022, 14(19): 4958 doi: 10.3390/rs14194958
    [21]
    BEYERLE G, SCHMIDT T, MICHALAK G, et al. GPS radio occultation with GRACE: Atmospheric profiling utilizing the zero difference technique[J]. Geophysical Research Letters, 2005, 32(13): L13806
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article Views(422) PDF Downloads(50) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return