| Citation: | ZHANG Jingjing, LÜ Yong, ZHANG Tao, LIU Fangwu. Research Progress of Spaceflight Rodent Culture Devices and Experimental Techniques (in Chinese). Chinese Journal of Space Science, 2024, 44(3): 544-555 doi: 10.11728/cjss2024.03.2023-0096 |
| [1] |
VOELS S A, EPPLER D B. The International Space Station as a platform for space science[J]. Advances in Space Research, 2004, 34(3): 594-599 doi: 10.1016/j.asr.2003.03.027
|
| [2] |
WNOROWSKI A, SHARMA A, CHEN H D, et al. Effects of spaceflight on human induced pluripotent stem cell-derived cardiomyocyte structure and function[J]. Stem Cell Reports, 2019, 13(6): 960-969 doi: 10.1016/j.stemcr.2019.10.006
|
| [3] |
BISSERIER M, BROJAKOWSKA A, SAFFRAN N, et al. Astronauts Plasma-Derived exosomes induced aberrant EZH2-Mediated H3K27me3 epigenetic regulation of the vitamin D receptor[J]. Frontiers in Cardiovascular Medicine, 2022, 9: 855181 doi: 10.3389/fcvm.2022.855181
|
| [4] |
KRITTANAWONG C, SINGH N K, SCHEURING R A, et al. Human health during space travel: state-of-the-art review[J]. Cells, 2023, 12(1): 40
|
| [5] |
GEORGE K, CHAPPELL L J, CUCINOTTA F A. Persistence of space radiation induced cytogenetic damage in the blood lymphocytes of astronauts[J]. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 2010, 701(1): 75-79 doi: 10.1016/j.mrgentox.2010.02.007
|
| [6] |
BALLARD R W, CONNOLLY J P. U. S. /U. S. S. R. joint research in space biology and medicine on Cosmos biosatellites[J]. The FASEB Journal, 1990, 4(1): 5-9 doi: 10.1096/fasebj.4.1.2403951
|
| [7] |
SUN G S, TOU J C, YU D, et al. The past, present, and future of National Aeronautics and Space Administration spaceflight diet in support of microgravity rodent experiments[J]. Nutrition, 2014, 30(2): 125-130 doi: 10.1016/j.nut.2013.04.005
|
| [8] |
CANCEDDA R, LIU Y, RUGGIU A, et al. The Mice Drawer System (MDS) experiment and the space endurance record-breaking mice[J]. PLoS One, 2012, 7(5): e32243 doi: 10.1371/journal.pone.0032243
|
| [9] |
ANDREEV-ANDRIEVSKIY A, POPOVA A, BOYLE R, et al. Mice in Bion-M 1 space mission: training and selection[J]. PLoS One, 2014, 9(8): e104830 doi: 10.1371/journal.pone.0104830
|
| [10] |
SHIMBO M, KUDO T, HAMADA M, et al. Ground-based assessment of JAXA mouse habitat cage unit by mouse phenotypic studies[J]. Experimental Animals, 2016, 65(2): 175-187 doi: 10.1538/expanim.15-0077
|
| [11] |
汤章城. 空间生命科学研究进展[J]. 中国科学院院刊, 1995, 10(2): 128-133
TANG Zhangcheng. Advances in space life sciences research[J]. Bulletin of the Chinese Academy of Sciences, 1995, 10(2): 128-133
|
| [12] |
MA B H, CAO Y J, ZHENG W B, et al. Real-time micrography of mouse preimplantation embryos in an orbit module on SJ-8 satellite[J]. Microgravity Science and Technology, 2008, 20(2): 127-136 doi: 10.1007/s12217-008-9013-8
|
| [13] |
LEI X H, CAO Y J, MA B H, et al. Development of mouse preimplantation embryos in space[J]. National Science Review, 2020, 7(9): 1437-1446 doi: 10.1093/nsr/nwaa062
|
| [14] |
王翔, 王为. 我国天宫空间站研制及建造进展[J]. 科学通报, 2022, 67(34): 4017-4028 doi: 10.1360/TB-2022-0499
WANG Xiang, WANG Wei. Development and construction progress of the Tiangong space station in China[J]. Chinese Science Bulletin, 2022, 67(34): 4017-4028 doi: 10.1360/TB-2022-0499
|
| [15] |
LI J, LIU F W, ZHANG T. Research progress of space mice flight payload[J]. Chinese Journal of Space Science, 2021, 41(3): 445-456 doi: 10.11728/cjss2021.03.445
|
| [16] |
JENNINGS R T, GARRIOTT O K, BOGOMOLOV V V, et al. The ISS flight of richard garriott: a template for medicine and science investigation on future spaceflight participant missions[J]. Aviation, Space, and Environmental Medicine, 2010, 81(2): 133-135 doi: 10.3357/ASEM.2650.2010
|
| [17] |
TOTH L A. The influence of the cage environment on rodent physiology and behavior: implications for reproducibility of pre-clinical rodent research[J]. Experimental Neuro logy, 2015, 270: 72-77 doi: 10.1016/j.expneurol.2015.04.010
|
| [18] |
GARNER J P. Stereotypies and other abnormal repetitive behaviors: potential impact on validity, reliability, and replicability of scientific outcomes[J]. Ilar Journal, 2005, 46(2): 106-117 doi: 10.1093/ilar.46.2.106
|
| [19] |
RONCA A E, MOYER E L, TALYANSKY Y, et al. Behavior of mice aboard the International Space Station[J]. Scientific Reports, 2019, 9(1): 4717 doi: 10.1038/s41598-019-40789-y
|
| [20] |
SAVAGE P D JR, JAHNS G C, DALTON B P, et al. The Rodent Research Animal Holding Facility as a Barrier to Environmental Contamination[C]//SAE International Intersociety Conference on Environmental Systems. California: SAE, 1989: 879-886
|
| [21] |
DALTON P, GOULD M, GIRTEN B, et al. Preventing annoyance from odors in spaceflight: a method for evaluating the sensory impact of rodent housing[J]. Journal Applied Physiology, 2003, 95(5): 2113-2121 doi: 10.1152/japplphysiol.00399.2003
|
| [22] |
FAST T, GRINDELAND R, KRAFT L, et al. Rat maintenance in the research animal holding facility during the flight of space lab 3[J]. The Physiologist, 1985, 28(S6): S187-S188
|
| [23] |
RAINEY K. Rodent Research-1(SpaceX-4)[EB/OL]. [2023-07-23]. https://www.nasa.gov/mission_pages/station/research/news/rodent_research
|
| [24] |
TOU J, GRINDELAND R, BARRETT J, et al. Evaluation of NASA Foodbars as a standard diet for use in Short-Term rodent space flight studies[J]. Nutrition, 2003, 19(11/12): 947-954
|
| [25] |
MOYER E L, DUMARS P M, SUN G S, et al. Evaluation of rodent spaceflight in the NASA animal enclosure module for an extended operational period (up to 35 days)[J]. NPJ Microgravity, 2016, 2(1): 16002 doi: 10.1038/npjmgrav.2016.2
|
| [26] |
BONTING S L. Animal research facility for Space Station Freedom[J]. Advances in Space Research, 1992, 12(1): 253-257 doi: 10.1016/0273-1177(92)90291-5
|
| [27] |
CHOI S U, RONCA A, LEVESON-GOWER D, et al. Advances in rodent research missions on the International Space Station[C]//Proceedings of the ISS R and D Conference 2016. San Diego: NASA, 2016
|
| [28] |
TASCHER G, BRIOCHE T, MAES P, et al. Proteome-wide adaptations of mouse skeletal muscles during a full month in space[J]. Journal of Proteome Research, 2017, 16(7): 2623-2638 doi: 10.1021/acs.jproteome.7b00201
|
| [29] |
MACAULAY T R, SIAMWALA J H, HARGENS A R, et al. Thirty days of spaceflight does not alter murine calvariae structure despite increased Sost expression[J]. Bone Reports, 2017, 7: 57-62 doi: 10.1016/j.bonr.2017.08.004
|
| [30] |
LEE S J, LEHAR A, MEIR J U, et al. Targeting myostatin/activin A protects against skeletal muscle and bone loss during spaceflight[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(38): 23942-23951
|
| [31] |
COULOMBE J C, SARAZIN B A, MULLEN Z, et al. Microgravity-induced alterations of mouse bones are compartment- and site-specific and vary with age[J]. Bone, 2021, 151: 116021 doi: 10.1016/j.bone.2021.116021
|
| [32] |
MAO X W, SANDBERG L B, GRIDLEY D S, et al. Proteomic analysis of mouse brain subjected to spaceflight[J]. International Journal of Molecular Sciences, 2019, 20(1): 7
|
| [33] |
CASERO D, GILL K, SRIDHARAN V, et al. Space-type radiation induces multimodal responses in the mouse gut microbiome and metabolome[J]. Microbiome, 2017, 5(1): 105 doi: 10.1186/s40168-017-0325-z
|
| [34] |
MAO X W, NISHIYAMA N C, BYRUM S D, et al. Spaceflight induces oxidative damage to blood-brain barrier integrity in a mouse model[J]. The FASEB Journal, 2020, 34(11): 15516-15530 doi: 10.1096/fj.202001754R
|
| [35] |
BAINS R S, WELLS S, SILLITO R R, et al. Assessing mouse behaviour throughout the light/dark cycle using automated in-cage analysis tools[J]. Journal of Neuroscience Methods, 2018, 300: 37-47 doi: 10.1016/j.jneumeth.2017.04.014
|
| [36] |
SANDONÀ D, DESAPHY J F, CAMERINO G M, et al. Adaptation of mouse skeletal muscle to long-term microgravity in the MDS mission[J]. PLoS One, 2012, 7(3): e33232 doi: 10.1371/journal.pone.0033232
|
| [37] |
TAVELLA S, RUGGIU A, GIULIANI A, et al. Bone turnover in wild type and pleiotrophin-transgenic mice housed for three months in the International Space Station (ISS)[J]. PLoS One, 2012, 7(3): e33179 doi: 10.1371/journal.pone.0033179
|
| [38] |
VAN LOO P L P, VAN ZUTPHEN L F M, BAUMANS V, et al. Male management: coping with aggression problems in male laboratory mice[J]. Laboratory Animals, 2003, 37(4): 300-313 doi: 10.1258/002367703322389870
|
| [39] |
NASA. Spaceflight-Induced Bone Loss Alters Failure Mode and Reduces Bending Strength in Murine Spinal Segments from Bion-M1[EB/OL]. (2022-02-15)[2023-04-03]. https://osdr.nasa.gov/bio/repo/data/studies/OSD-471
|
| [40] |
MORITA H, OBATA K, ABE C, et al. Feasibility of a short-arm centrifuge for mouse hypergravity experiments[J]. PLoS One, 2015, 10(7): e0133981 doi: 10.1371/journal.pone.0133981
|
| [41] |
SHIBA D, MIZUNO H, YUMOTO A, et al. Development of new experimental platform ‘MARS’—Multiple Artificial-gravity Research System—to elucidate the impacts of micro/partial gravity on mice[J]. Scientific Reports, 2017, 7(1): 10837 doi: 10.1038/s41598-017-10998-4
|
| [42] |
MORITA H, YAMAGUCHI A, SHIBA D, et al. Impact of a simulated gravity load for atmospheric reentry, 10 g for 2 min, on conscious mice[J]. The Journal of Physiological Sciences, 2017, 67(4): 531-537 doi: 10.1007/s12576-017-0526-z
|
| [43] |
ANDREEV-ANDRIEVSKIY A, POPOVA A, LLORET J C, et al. BION-M 1: first continuous blood pressure monitoring in mice during a 30-day spaceflight[J]. Life Sciences in Space Research, 2017, 13: 19-26 doi: 10.1016/j.lssr.2017.03.002
|
| [44] |
DSI. DSI PhysioTel PA-C10 Pressure Transmitter for Mice[EB/OL]. [2023-09-27]. https://www.datasci.com/products/implantable-telemetry/small-animal-telemetry/pa-c10
|
| [45] |
NAGARAJA M P, RISIN D. The current state of bone loss research: Data from spaceflight and microgravity simulators[J]. Journal of Cellular Biochemistry, 2013, 114(5): 1001-1008 doi: 10.1002/jcb.24454
|
| [46] |
MAUPIN K A, CHILDRESS P, BRINKER A, et al. Skeletal adaptations in young male mice after 4 weeks aboard the International Space Station[J]. NPJ Microgra vity, 2019, 5(1): 21 doi: 10.1038/s41526-019-0081-4
|
| [47] |
MAURISSEN J P J, MARABLE B R, ANDRUS A K, et al. Factors affecting grip strength testing[J]. Neurotoxicology and Teratology, 2003, 25(5): 543-553 doi: 10.1016/S0892-0362(03)00073-4
|
| [48] |
Columbus Instruments. Grip Strength Meter[EB/OL]. [2023-09-27]. https://www.colinst.com/products/grip-strength-meter
|
| [49] |
TSE. PhenoMaster • TSE Systems - Together through Science and Engineering[EB/OL]. [2023-09-27]. https://www.tse-systems.com/service/phenotype/
|
| [50] |
CHANIOTAKIS I, SPYRLIADIS A, KATSIMPOULAS M, et al. The mouse and the rat in surgical research. The anesthetic approach[J]. Journal of the Hellenic Veterinary Medi cal Society, 2016, 67(3): 147-162
|
| [51] |
KEEBLE E. Guide to veterinary care of small rodents[J]. In Practice, 2021, 43(8): 424-437 doi: 10.1002/inpr.124
|
| [52] |
CHOI S Y, SARAVIA-BUTLER A, SHIRAZI-FARD Y, et al. Validation of a new rodent experimental system to investigate consequences of long duration space habitation[J]. Scientific Reports, 2020, 10(1): 2336 doi: 10.1038/s41598-020-58898-4
|
| [53] |
JONSCHER K R, ALFONSO-GARCIA A, SUHALIM J L, et al. Spaceflight activates lipotoxic pathways in mouse liver[J]. PLoS One, 2016, 11(4): e0152877 doi: 10.1371/journal.pone.0152877
|
| [54] |
BEHESHTI A, SHIRAZI-FARD Y, CHOI S, et al. Exploring the effects of spaceflight on mouse physiology using the open access NASA GeneLab platform[J]. Journal of Visualized Experiments, 2019(143): e58447
|
| [55] |
KWOK A, ROSAS S, BATEMAN T A, et al. Altered rodent gait characteristics after ~35 days in orbit aboard the International Space Station[J]. Life Sciences in Space Research, 2020, 24: 9-17 doi: 10.1016/j.lssr.2019.10.010
|