Volume 44 Issue 3
Jun.  2024
Turn off MathJax
Article Contents
ZHANG Jingjing, LÜ Yong, ZHANG Tao, LIU Fangwu. Research Progress of Spaceflight Rodent Culture Devices and Experimental Techniques (in Chinese). Chinese Journal of Space Science, 2024, 44(3): 544-555 doi: 10.11728/cjss2024.03.2023-0096
Citation: ZHANG Jingjing, LÜ Yong, ZHANG Tao, LIU Fangwu. Research Progress of Spaceflight Rodent Culture Devices and Experimental Techniques (in Chinese). Chinese Journal of Space Science, 2024, 44(3): 544-555 doi: 10.11728/cjss2024.03.2023-0096

Research Progress of Spaceflight Rodent Culture Devices and Experimental Techniques

doi: 10.11728/cjss2024.03.2023-0096 cstr: 32142.14.cjss2024.03.2023-0096
  • Received Date: 2023-09-04
  • Rev Recd Date: 2023-10-26
  • Available Online: 2024-03-08
  • Space animal experiments constitute an integral component of human space life science research. Historically, these experiments have made significant contributions to the exploration of the life phenomena and activity patterns of Earth-based organisms within the spaceflight environment, as well as to the sustainable development of manned spaceflight. With the development of aerospace engineering, astronauts stay in space longer and longer. To address the health problems of human spaceflight, rodent spaceflight experiments have been carried out to study the effects of the space environment on living organisms, thereby providing crucial physiological and medical data for human spaceflight. In this work, the spaceflight rodent culture devices developed by foreign countries are investigated. The rodents’ survival status and the causes of death are analyzed, and the shortcomings and improvements of the culture devices are summarized. Then the relevant spaceflight rodent experimental technologies, including before launch, in orbit, and after returning to the ground, are investigated. This work aims to provide references for the design of China’s spaceflight rodent culture devices and rodent experiments.

     

  • loading
  • [1]
    VOELS S A, EPPLER D B. The International Space Station as a platform for space science[J]. Advances in Space Research, 2004, 34(3): 594-599 doi: 10.1016/j.asr.2003.03.027
    [2]
    WNOROWSKI A, SHARMA A, CHEN H D, et al. Effects of spaceflight on human induced pluripotent stem cell-derived cardiomyocyte structure and function[J]. Stem Cell Reports, 2019, 13(6): 960-969 doi: 10.1016/j.stemcr.2019.10.006
    [3]
    BISSERIER M, BROJAKOWSKA A, SAFFRAN N, et al. Astronauts Plasma-Derived exosomes induced aberrant EZH2-Mediated H3K27me3 epigenetic regulation of the vitamin D receptor[J]. Frontiers in Cardiovascular Medicine, 2022, 9: 855181 doi: 10.3389/fcvm.2022.855181
    [4]
    KRITTANAWONG C, SINGH N K, SCHEURING R A, et al. Human health during space travel: state-of-the-art review[J]. Cells, 2023, 12(1): 40
    [5]
    GEORGE K, CHAPPELL L J, CUCINOTTA F A. Persistence of space radiation induced cytogenetic damage in the blood lymphocytes of astronauts[J]. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 2010, 701(1): 75-79 doi: 10.1016/j.mrgentox.2010.02.007
    [6]
    BALLARD R W, CONNOLLY J P. U. S. /U. S. S. R. joint research in space biology and medicine on Cosmos biosatellites[J]. The FASEB Journal, 1990, 4(1): 5-9 doi: 10.1096/fasebj.4.1.2403951
    [7]
    SUN G S, TOU J C, YU D, et al. The past, present, and future of National Aeronautics and Space Administration spaceflight diet in support of microgravity rodent experiments[J]. Nutrition, 2014, 30(2): 125-130 doi: 10.1016/j.nut.2013.04.005
    [8]
    CANCEDDA R, LIU Y, RUGGIU A, et al. The Mice Drawer System (MDS) experiment and the space endurance record-breaking mice[J]. PLoS One, 2012, 7(5): e32243 doi: 10.1371/journal.pone.0032243
    [9]
    ANDREEV-ANDRIEVSKIY A, POPOVA A, BOYLE R, et al. Mice in Bion-M 1 space mission: training and selection[J]. PLoS One, 2014, 9(8): e104830 doi: 10.1371/journal.pone.0104830
    [10]
    SHIMBO M, KUDO T, HAMADA M, et al. Ground-based assessment of JAXA mouse habitat cage unit by mouse phenotypic studies[J]. Experimental Animals, 2016, 65(2): 175-187 doi: 10.1538/expanim.15-0077
    [11]
    汤章城. 空间生命科学研究进展[J]. 中国科学院院刊, 1995, 10(2): 128-133

    TANG Zhangcheng. Advances in space life sciences research[J]. Bulletin of the Chinese Academy of Sciences, 1995, 10(2): 128-133
    [12]
    MA B H, CAO Y J, ZHENG W B, et al. Real-time micrography of mouse preimplantation embryos in an orbit module on SJ-8 satellite[J]. Microgravity Science and Technology, 2008, 20(2): 127-136 doi: 10.1007/s12217-008-9013-8
    [13]
    LEI X H, CAO Y J, MA B H, et al. Development of mouse preimplantation embryos in space[J]. National Science Review, 2020, 7(9): 1437-1446 doi: 10.1093/nsr/nwaa062
    [14]
    王翔, 王为. 我国天宫空间站研制及建造进展[J]. 科学通报, 2022, 67(34): 4017-4028 doi: 10.1360/TB-2022-0499

    WANG Xiang, WANG Wei. Development and construction progress of the Tiangong space station in China[J]. Chinese Science Bulletin, 2022, 67(34): 4017-4028 doi: 10.1360/TB-2022-0499
    [15]
    LI J, LIU F W, ZHANG T. Research progress of space mice flight payload[J]. Chinese Journal of Space Science, 2021, 41(3): 445-456 doi: 10.11728/cjss2021.03.445
    [16]
    JENNINGS R T, GARRIOTT O K, BOGOMOLOV V V, et al. The ISS flight of richard garriott: a template for medicine and science investigation on future spaceflight participant missions[J]. Aviation, Space, and Environmental Medicine, 2010, 81(2): 133-135 doi: 10.3357/ASEM.2650.2010
    [17]
    TOTH L A. The influence of the cage environment on rodent physiology and behavior: implications for reproducibility of pre-clinical rodent research[J]. Experimental Neuro logy, 2015, 270: 72-77 doi: 10.1016/j.expneurol.2015.04.010
    [18]
    GARNER J P. Stereotypies and other abnormal repetitive behaviors: potential impact on validity, reliability, and replicability of scientific outcomes[J]. Ilar Journal, 2005, 46(2): 106-117 doi: 10.1093/ilar.46.2.106
    [19]
    RONCA A E, MOYER E L, TALYANSKY Y, et al. Behavior of mice aboard the International Space Station[J]. Scientific Reports, 2019, 9(1): 4717 doi: 10.1038/s41598-019-40789-y
    [20]
    SAVAGE P D JR, JAHNS G C, DALTON B P, et al. The Rodent Research Animal Holding Facility as a Barrier to Environmental Contamination[C]//SAE International Intersociety Conference on Environmental Systems. California: SAE, 1989: 879-886
    [21]
    DALTON P, GOULD M, GIRTEN B, et al. Preventing annoyance from odors in spaceflight: a method for evaluating the sensory impact of rodent housing[J]. Journal Applied Physiology, 2003, 95(5): 2113-2121 doi: 10.1152/japplphysiol.00399.2003
    [22]
    FAST T, GRINDELAND R, KRAFT L, et al. Rat maintenance in the research animal holding facility during the flight of space lab 3[J]. The Physiologist, 1985, 28(S6): S187-S188
    [23]
    RAINEY K. Rodent Research-1(SpaceX-4)[EB/OL]. [2023-07-23]. https://www.nasa.gov/mission_pages/station/research/news/rodent_research
    [24]
    TOU J, GRINDELAND R, BARRETT J, et al. Evaluation of NASA Foodbars as a standard diet for use in Short-Term rodent space flight studies[J]. Nutrition, 2003, 19(11/12): 947-954
    [25]
    MOYER E L, DUMARS P M, SUN G S, et al. Evaluation of rodent spaceflight in the NASA animal enclosure module for an extended operational period (up to 35 days)[J]. NPJ Microgravity, 2016, 2(1): 16002 doi: 10.1038/npjmgrav.2016.2
    [26]
    BONTING S L. Animal research facility for Space Station Freedom[J]. Advances in Space Research, 1992, 12(1): 253-257 doi: 10.1016/0273-1177(92)90291-5
    [27]
    CHOI S U, RONCA A, LEVESON-GOWER D, et al. Advances in rodent research missions on the International Space Station[C]//Proceedings of the ISS R and D Conference 2016. San Diego: NASA, 2016
    [28]
    TASCHER G, BRIOCHE T, MAES P, et al. Proteome-wide adaptations of mouse skeletal muscles during a full month in space[J]. Journal of Proteome Research, 2017, 16(7): 2623-2638 doi: 10.1021/acs.jproteome.7b00201
    [29]
    MACAULAY T R, SIAMWALA J H, HARGENS A R, et al. Thirty days of spaceflight does not alter murine calvariae structure despite increased Sost expression[J]. Bone Reports, 2017, 7: 57-62 doi: 10.1016/j.bonr.2017.08.004
    [30]
    LEE S J, LEHAR A, MEIR J U, et al. Targeting myostatin/activin A protects against skeletal muscle and bone loss during spaceflight[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(38): 23942-23951
    [31]
    COULOMBE J C, SARAZIN B A, MULLEN Z, et al. Microgravity-induced alterations of mouse bones are compartment- and site-specific and vary with age[J]. Bone, 2021, 151: 116021 doi: 10.1016/j.bone.2021.116021
    [32]
    MAO X W, SANDBERG L B, GRIDLEY D S, et al. Proteomic analysis of mouse brain subjected to spaceflight[J]. International Journal of Molecular Sciences, 2019, 20(1): 7
    [33]
    CASERO D, GILL K, SRIDHARAN V, et al. Space-type radiation induces multimodal responses in the mouse gut microbiome and metabolome[J]. Microbiome, 2017, 5(1): 105 doi: 10.1186/s40168-017-0325-z
    [34]
    MAO X W, NISHIYAMA N C, BYRUM S D, et al. Spaceflight induces oxidative damage to blood-brain barrier integrity in a mouse model[J]. The FASEB Journal, 2020, 34(11): 15516-15530 doi: 10.1096/fj.202001754R
    [35]
    BAINS R S, WELLS S, SILLITO R R, et al. Assessing mouse behaviour throughout the light/dark cycle using automated in-cage analysis tools[J]. Journal of Neuroscience Methods, 2018, 300: 37-47 doi: 10.1016/j.jneumeth.2017.04.014
    [36]
    SANDONÀ D, DESAPHY J F, CAMERINO G M, et al. Adaptation of mouse skeletal muscle to long-term microgravity in the MDS mission[J]. PLoS One, 2012, 7(3): e33232 doi: 10.1371/journal.pone.0033232
    [37]
    TAVELLA S, RUGGIU A, GIULIANI A, et al. Bone turnover in wild type and pleiotrophin-transgenic mice housed for three months in the International Space Station (ISS)[J]. PLoS One, 2012, 7(3): e33179 doi: 10.1371/journal.pone.0033179
    [38]
    VAN LOO P L P, VAN ZUTPHEN L F M, BAUMANS V, et al. Male management: coping with aggression problems in male laboratory mice[J]. Laboratory Animals, 2003, 37(4): 300-313 doi: 10.1258/002367703322389870
    [39]
    NASA. Spaceflight-Induced Bone Loss Alters Failure Mode and Reduces Bending Strength in Murine Spinal Segments from Bion-M1[EB/OL]. (2022-02-15)[2023-04-03]. https://osdr.nasa.gov/bio/repo/data/studies/OSD-471
    [40]
    MORITA H, OBATA K, ABE C, et al. Feasibility of a short-arm centrifuge for mouse hypergravity experiments[J]. PLoS One, 2015, 10(7): e0133981 doi: 10.1371/journal.pone.0133981
    [41]
    SHIBA D, MIZUNO H, YUMOTO A, et al. Development of new experimental platform ‘MARS’—Multiple Artificial-gravity Research System—to elucidate the impacts of micro/partial gravity on mice[J]. Scientific Reports, 2017, 7(1): 10837 doi: 10.1038/s41598-017-10998-4
    [42]
    MORITA H, YAMAGUCHI A, SHIBA D, et al. Impact of a simulated gravity load for atmospheric reentry, 10 g for 2 min, on conscious mice[J]. The Journal of Physiological Sciences, 2017, 67(4): 531-537 doi: 10.1007/s12576-017-0526-z
    [43]
    ANDREEV-ANDRIEVSKIY A, POPOVA A, LLORET J C, et al. BION-M 1: first continuous blood pressure monitoring in mice during a 30-day spaceflight[J]. Life Sciences in Space Research, 2017, 13: 19-26 doi: 10.1016/j.lssr.2017.03.002
    [44]
    DSI. DSI PhysioTel PA-C10 Pressure Transmitter for Mice[EB/OL]. [2023-09-27]. https://www.datasci.com/products/implantable-telemetry/small-animal-telemetry/pa-c10
    [45]
    NAGARAJA M P, RISIN D. The current state of bone loss research: Data from spaceflight and microgravity simulators[J]. Journal of Cellular Biochemistry, 2013, 114(5): 1001-1008 doi: 10.1002/jcb.24454
    [46]
    MAUPIN K A, CHILDRESS P, BRINKER A, et al. Skeletal adaptations in young male mice after 4 weeks aboard the International Space Station[J]. NPJ Microgra vity, 2019, 5(1): 21 doi: 10.1038/s41526-019-0081-4
    [47]
    MAURISSEN J P J, MARABLE B R, ANDRUS A K, et al. Factors affecting grip strength testing[J]. Neurotoxicology and Teratology, 2003, 25(5): 543-553 doi: 10.1016/S0892-0362(03)00073-4
    [48]
    Columbus Instruments. Grip Strength Meter[EB/OL]. [2023-09-27]. https://www.colinst.com/products/grip-strength-meter
    [49]
    TSE. PhenoMaster • TSE Systems - Together through Science and Engineering[EB/OL]. [2023-09-27]. https://www.tse-systems.com/service/phenotype/
    [50]
    CHANIOTAKIS I, SPYRLIADIS A, KATSIMPOULAS M, et al. The mouse and the rat in surgical research. The anesthetic approach[J]. Journal of the Hellenic Veterinary Medi cal Society, 2016, 67(3): 147-162
    [51]
    KEEBLE E. Guide to veterinary care of small rodents[J]. In Practice, 2021, 43(8): 424-437 doi: 10.1002/inpr.124
    [52]
    CHOI S Y, SARAVIA-BUTLER A, SHIRAZI-FARD Y, et al. Validation of a new rodent experimental system to investigate consequences of long duration space habitation[J]. Scientific Reports, 2020, 10(1): 2336 doi: 10.1038/s41598-020-58898-4
    [53]
    JONSCHER K R, ALFONSO-GARCIA A, SUHALIM J L, et al. Spaceflight activates lipotoxic pathways in mouse liver[J]. PLoS One, 2016, 11(4): e0152877 doi: 10.1371/journal.pone.0152877
    [54]
    BEHESHTI A, SHIRAZI-FARD Y, CHOI S, et al. Exploring the effects of spaceflight on mouse physiology using the open access NASA GeneLab platform[J]. Journal of Visualized Experiments, 2019(143): e58447
    [55]
    KWOK A, ROSAS S, BATEMAN T A, et al. Altered rodent gait characteristics after ~35 days in orbit aboard the International Space Station[J]. Life Sciences in Space Research, 2020, 24: 9-17 doi: 10.1016/j.lssr.2019.10.010
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(2)

    Article Metrics

    Article Views(492) PDF Downloads(57) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return