Volume 44 Issue 3
Jun.  2024
Turn off MathJax
Article Contents
YANG Futao, ZHANG Hanqing. Orbital Transfer Problem on the Central Manifold of Libration Points (in Chinese). Chinese Journal of Space Science, 2024, 44(3): 556-569 doi: 10.11728/cjss2024.03.2023-0098
Citation: YANG Futao, ZHANG Hanqing. Orbital Transfer Problem on the Central Manifold of Libration Points (in Chinese). Chinese Journal of Space Science, 2024, 44(3): 556-569 doi: 10.11728/cjss2024.03.2023-0098

Orbital Transfer Problem on the Central Manifold of Libration Points

doi: 10.11728/cjss2024.03.2023-0098 cstr: 32142.14.cjss2024.03.2023-0098
  • Received Date: 2023-09-09
  • Accepted Date: 2024-05-13
  • Rev Recd Date: 2024-01-30
  • Available Online: 2024-05-08
  • The Circular Restricted Three-body Problem (CR3BP) exhibits highly complex nonlinear dynamical characteristics in the vicinity of its libration points. The various periodic and quasi-periodic orbits within this region hold significant value for increasingly complex deep space exploration missions, offering more possibilities and flexibility in the design and control of mission trajectories. The issue of orbit transfers between these libration points warrants systematic investigation. To compute orbits around libration points, a numerical computation method based on escape time is proposed, enabling the unified calculation of various quasi-periodic orbits across a broad range of energy levels. Based on the manifold configuration of libration point orbit state points, a universal orbit maintenance strategy called state-adjoint techniques is proposed, yielding schemes that can sustain long-term stable operation of various libration point orbits. Building on extensive studies of invariant manifolds and Poincaré sections associated with numerous libration point orbits, a comprehensive solution has been designed to enable orbit transfers between libration points through pulse maneuvers. This method fully leverages the dynamical features of libration points and has been proven effective through simulation validation, offering new insights for research on libration point orbit transfers.

     

  • loading
  • [1]
    雷汉伦, 徐波. 小推力限制性三体系统下稳定平动点附近的高阶解[J]. 中国科学: 技术科学, 2015, 45(11): 1207-1217 doi: 10.1360/N092014-00257

    LEI Hanlun, XU Bo. High-order solutions around the stable libration points in the low-thrust restricted three-body system[J]. Scientia Sinica Technologica, 2015, 45(11): 1207-1217 doi: 10.1360/N092014-00257
    [2]
    BOOKLESS J, MCINNES C. Control of Lagrange point orbits using solar sail propulsion[J]. Acta Astronautica, 2008, 62(2/3): 159-176
    [3]
    朱政帆, 高扬. 空间小推力轨道最优Bang-Bang控制的两类延拓解法综述[J]. 深空探测学报, 2017, 4(2): 101-110

    ZHU Zhengfan, GAO Yang. Survey of two classes of continuation methods for solving optimal Bang-Bang control of low-thrust space trajectories[J]. Journal of Deep Space Exploration, 2017, 4(2): 101-110
    [4]
    KULUMANI S, LEE T. Systematic design of optimal low-thrust transfers for the three-body problem[J]. The Journal of the Astronautical Sciences, 2019, 66(1): 1-31 doi: 10.1007/s40295-018-00139-y
    [5]
    任远, 崔平远, 栾恩杰. 基于标称轨道的小推力轨道设计方法[J]. 吉林大学学报: 工学版, 2006, 36(6): 998-1002

    REN Yuan, CUI Pingyuan, LUAN Enjie. Low-thrust trajectory design method based on nominal orbit[J]. Journal of Jilin University: Engineering and Technology Edition, 2006, 36(6): 998-1002
    [6]
    HARGRAVES C R, PARIS S W. Direct trajectory optimization using nonlinear programming and collocation[J]. Journal of Guidance, Control, and Dynamics, 1987, 10(4): 338-342 doi: 10.2514/3.20223
    [7]
    HERMAN A L, CONWAY B A. Direct optimization using collocation based on high-order Gauss-Lobatto quadrature rules[J]. Journal of Guidance, Control, and Dynamics, 1996, 19(3): 592-599 doi: 10.2514/3.21662
    [8]
    孙军伟, 乔栋, 崔平远. 基于SQP方法的常推力月球软着陆轨道优化方法[J]. 宇航学报, 2006, 27(1): 99-102,112 doi: 10.3321/j.issn:1000-1328.2006.01.021

    SUN Junwei, QIAO Dong, CUI Pingyuan. Study on the optimal trajectories of lunar soft-landing with fixed-thrust using SQP method[J]. Journal of Astronautics, 2006, 27(1): 99-102,112 doi: 10.3321/j.issn:1000-1328.2006.01.021
    [9]
    朱建丰, 徐世杰. 基于自适应模拟退火遗传算法的月球软着陆轨道优化[J]. 航空学报, 2007, 28(4): 806-812 doi: 10.3321/j.issn:1000-6893.2007.04.007

    ZHU Jianfeng, XU Shijie. Optimization of lunar soft landing trajectory based on adaptive simulated annealing genetic algorithm[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(4): 806-812 doi: 10.3321/j.issn:1000-6893.2007.04.007
    [10]
    FAHROO F, ROSS I M. Direct trajectory optimization by a Chebyshev pseudospectral method[J]. Journal of Guidance, Control, and Dynamics, 2002, 25(1): 160-166 doi: 10.2514/2.4862
    [11]
    PARK B G, TAHK M J. Three-dimensional trajectory optimization of soft lunar landings from the parking orbit with considerations of the landing site[J]. International Journal of Control, Automation and Systems, 2011, 9(6): 1164-1172 doi: 10.1007/s12555-011-0618-0
    [12]
    E Z B, GUZZETTI D. Multi-revolution low-thrust trajectory optimization using symplectic methods[J]. Science China Technological Sciences, 2020, 63(3): 506-519 doi: 10.1007/s11431-019-9511-7
    [13]
    WOOLLANDS R, TAHERI E, JUNKINS L J. Efficient computation of optimal low thrust gravity perturbed orbit transfers[J]. The Journal of the Astronautical Sciences, 2020, 67(2): 458-484 doi: 10.1007/s40295-019-00152-9
    [14]
    CHUPIN M, HABERKORN T, TRÉLAT E. Low-thrust Lyapunov to Lyapunov and halo to halo missions with L2-minimization[J]. ESAIM: Mathematical Modelling and Numerical Analysis, 2017, 51(3): 965-996 doi: 10.1051/m2an/2016044
    [15]
    DU C R, WU K X, STARINOVA O L, et al. Two trajectory configurations for the low-thrust transfer between northern and southern halo orbits in the Earth-Moon system[J]. Advances in Space Research, 2023, 72(10): 4093-4105 doi: 10.1016/j.asr.2023.08.007
    [16]
    彭坤, 曾豪, 田林, 等. 小推力航天器的地球—火星转移轨道混合设计方法[J]. 航天返回与遥感, 2020, 41(1): 10-17 doi: 10.3969/j.issn.1009-8518.2020.01.002

    PENG Kun, ZENG Hao, TIAN Lin, et al. Hybrid design method of earth-mars transfer trajectory for low-thrust spacecraft[J]. Spacecraft Recovery & Remote Sensing, 2020, 41(1): 10-17 doi: 10.3969/j.issn.1009-8518.2020.01.002
    [17]
    (周敬, 胡军, 韩铭麟. 共线平动点附近小推力轨道转移中的微分修正技术[J]. 中国科学: 技术科学, 2021, 51(2): 207-220 doi: 10.1360/SST-2020-0140

    ZHOU Jing, HU Jun, HAN Minglin. Differential correction method in low-thrust orbit transfers near the collinear libration points[J]. Scientia Sinica Technologica, 2021, 51(2): 207-220 doi: 10.1360/SST-2020-0140
    [18]
    SANTOS L B T, SOUSA-SILVA P A, TERRA M O, et al. Optimal transfers from Moon to L2 halo orbit of the Earth-Moon system[J]. Advances in Space Research, 2022, 70(11): 3362-3372 doi: 10.1016/j.asr.2022.08.035
    [19]
    REN Y, SHAN J J. A novel algorithm for generating libration point orbits about the collinear points[J]. Celestial Mechanics and Dynamical Astronomy, 2014, 120(1): 57-75 doi: 10.1007/s10569-014-9560-9
    [20]
    TITOV V B. Zero-velocity surface in the general three-body-problem[J]. Vestnik St. Petersburg University, Mathematics, 2023, 56(1): 125-133 doi: 10.1134/S1063454123010144
    [21]
    张识, 王攀, 张瑞浩, 等. 选取任意庞加莱截面的新方法[J]. 物理学报, 2020, 69(4): 040503 doi: 10.7498/aps.69.20191585

    ZHANG Shi, WANG Pan, ZHANG Ruihao, et al. A new method for selecting arbitrary Poincare section[J]. Acta Physica Sinica, 2020, 69(4): 040503 doi: 10.7498/aps.69.20191585
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(19)  / Tables(3)

    Article Metrics

    Article Views(297) PDF Downloads(37) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return