| Citation: | YANG Futao, ZHANG Hanqing. Orbital Transfer Problem on the Central Manifold of Libration Points (in Chinese). Chinese Journal of Space Science, 2024, 44(3): 556-569 doi: 10.11728/cjss2024.03.2023-0098 |
| [1] |
雷汉伦, 徐波. 小推力限制性三体系统下稳定平动点附近的高阶解[J]. 中国科学: 技术科学, 2015, 45(11): 1207-1217 doi: 10.1360/N092014-00257
LEI Hanlun, XU Bo. High-order solutions around the stable libration points in the low-thrust restricted three-body system[J]. Scientia Sinica Technologica, 2015, 45(11): 1207-1217 doi: 10.1360/N092014-00257
|
| [2] |
BOOKLESS J, MCINNES C. Control of Lagrange point orbits using solar sail propulsion[J]. Acta Astronautica, 2008, 62(2/3): 159-176
|
| [3] |
朱政帆, 高扬. 空间小推力轨道最优Bang-Bang控制的两类延拓解法综述[J]. 深空探测学报, 2017, 4(2): 101-110
ZHU Zhengfan, GAO Yang. Survey of two classes of continuation methods for solving optimal Bang-Bang control of low-thrust space trajectories[J]. Journal of Deep Space Exploration, 2017, 4(2): 101-110
|
| [4] |
KULUMANI S, LEE T. Systematic design of optimal low-thrust transfers for the three-body problem[J]. The Journal of the Astronautical Sciences, 2019, 66(1): 1-31 doi: 10.1007/s40295-018-00139-y
|
| [5] |
任远, 崔平远, 栾恩杰. 基于标称轨道的小推力轨道设计方法[J]. 吉林大学学报: 工学版, 2006, 36(6): 998-1002
REN Yuan, CUI Pingyuan, LUAN Enjie. Low-thrust trajectory design method based on nominal orbit[J]. Journal of Jilin University: Engineering and Technology Edition, 2006, 36(6): 998-1002
|
| [6] |
HARGRAVES C R, PARIS S W. Direct trajectory optimization using nonlinear programming and collocation[J]. Journal of Guidance, Control, and Dynamics, 1987, 10(4): 338-342 doi: 10.2514/3.20223
|
| [7] |
HERMAN A L, CONWAY B A. Direct optimization using collocation based on high-order Gauss-Lobatto quadrature rules[J]. Journal of Guidance, Control, and Dynamics, 1996, 19(3): 592-599 doi: 10.2514/3.21662
|
| [8] |
孙军伟, 乔栋, 崔平远. 基于SQP方法的常推力月球软着陆轨道优化方法[J]. 宇航学报, 2006, 27(1): 99-102,112 doi: 10.3321/j.issn:1000-1328.2006.01.021
SUN Junwei, QIAO Dong, CUI Pingyuan. Study on the optimal trajectories of lunar soft-landing with fixed-thrust using SQP method[J]. Journal of Astronautics, 2006, 27(1): 99-102,112 doi: 10.3321/j.issn:1000-1328.2006.01.021
|
| [9] |
朱建丰, 徐世杰. 基于自适应模拟退火遗传算法的月球软着陆轨道优化[J]. 航空学报, 2007, 28(4): 806-812 doi: 10.3321/j.issn:1000-6893.2007.04.007
ZHU Jianfeng, XU Shijie. Optimization of lunar soft landing trajectory based on adaptive simulated annealing genetic algorithm[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(4): 806-812 doi: 10.3321/j.issn:1000-6893.2007.04.007
|
| [10] |
FAHROO F, ROSS I M. Direct trajectory optimization by a Chebyshev pseudospectral method[J]. Journal of Guidance, Control, and Dynamics, 2002, 25(1): 160-166 doi: 10.2514/2.4862
|
| [11] |
PARK B G, TAHK M J. Three-dimensional trajectory optimization of soft lunar landings from the parking orbit with considerations of the landing site[J]. International Journal of Control, Automation and Systems, 2011, 9(6): 1164-1172 doi: 10.1007/s12555-011-0618-0
|
| [12] |
E Z B, GUZZETTI D. Multi-revolution low-thrust trajectory optimization using symplectic methods[J]. Science China Technological Sciences, 2020, 63(3): 506-519 doi: 10.1007/s11431-019-9511-7
|
| [13] |
WOOLLANDS R, TAHERI E, JUNKINS L J. Efficient computation of optimal low thrust gravity perturbed orbit transfers[J]. The Journal of the Astronautical Sciences, 2020, 67(2): 458-484 doi: 10.1007/s40295-019-00152-9
|
| [14] |
CHUPIN M, HABERKORN T, TRÉLAT E. Low-thrust Lyapunov to Lyapunov and halo to halo missions with L2-minimization[J]. ESAIM: Mathematical Modelling and Numerical Analysis, 2017, 51(3): 965-996 doi: 10.1051/m2an/2016044
|
| [15] |
DU C R, WU K X, STARINOVA O L, et al. Two trajectory configurations for the low-thrust transfer between northern and southern halo orbits in the Earth-Moon system[J]. Advances in Space Research, 2023, 72(10): 4093-4105 doi: 10.1016/j.asr.2023.08.007
|
| [16] |
彭坤, 曾豪, 田林, 等. 小推力航天器的地球—火星转移轨道混合设计方法[J]. 航天返回与遥感, 2020, 41(1): 10-17 doi: 10.3969/j.issn.1009-8518.2020.01.002
PENG Kun, ZENG Hao, TIAN Lin, et al. Hybrid design method of earth-mars transfer trajectory for low-thrust spacecraft[J]. Spacecraft Recovery & Remote Sensing, 2020, 41(1): 10-17 doi: 10.3969/j.issn.1009-8518.2020.01.002
|
| [17] |
(周敬, 胡军, 韩铭麟. 共线平动点附近小推力轨道转移中的微分修正技术[J]. 中国科学: 技术科学, 2021, 51(2): 207-220 doi: 10.1360/SST-2020-0140
ZHOU Jing, HU Jun, HAN Minglin. Differential correction method in low-thrust orbit transfers near the collinear libration points[J]. Scientia Sinica Technologica, 2021, 51(2): 207-220 doi: 10.1360/SST-2020-0140
|
| [18] |
SANTOS L B T, SOUSA-SILVA P A, TERRA M O, et al. Optimal transfers from Moon to L2 halo orbit of the Earth-Moon system[J]. Advances in Space Research, 2022, 70(11): 3362-3372 doi: 10.1016/j.asr.2022.08.035
|
| [19] |
REN Y, SHAN J J. A novel algorithm for generating libration point orbits about the collinear points[J]. Celestial Mechanics and Dynamical Astronomy, 2014, 120(1): 57-75 doi: 10.1007/s10569-014-9560-9
|
| [20] |
TITOV V B. Zero-velocity surface in the general three-body-problem[J]. Vestnik St. Petersburg University, Mathematics, 2023, 56(1): 125-133 doi: 10.1134/S1063454123010144
|
| [21] |
张识, 王攀, 张瑞浩, 等. 选取任意庞加莱截面的新方法[J]. 物理学报, 2020, 69(4): 040503 doi: 10.7498/aps.69.20191585
ZHANG Shi, WANG Pan, ZHANG Ruihao, et al. A new method for selecting arbitrary Poincare section[J]. Acta Physica Sinica, 2020, 69(4): 040503 doi: 10.7498/aps.69.20191585
|