Volume 44 Issue 3
Jun.  2024
Turn off MathJax
Article Contents
ZHANG Yongchun, DONG Wenli, SUN Tao, GAO Yinyu, LI Zhirou, DUAN Wenhao, ZHOU Xiaoming. Evolution Mechanism of Phase Change Materials Liquid-bridge Phase Transition and Thermocapillary Convection under Microgravity Conditions (in Chinese). Chinese Journal of Space Science, 2024, 44(3): 536-543 doi: 10.11728/cjss2024.03.2023-0105
Citation: ZHANG Yongchun, DONG Wenli, SUN Tao, GAO Yinyu, LI Zhirou, DUAN Wenhao, ZHOU Xiaoming. Evolution Mechanism of Phase Change Materials Liquid-bridge Phase Transition and Thermocapillary Convection under Microgravity Conditions (in Chinese). Chinese Journal of Space Science, 2024, 44(3): 536-543 doi: 10.11728/cjss2024.03.2023-0105

Evolution Mechanism of Phase Change Materials Liquid-bridge Phase Transition and Thermocapillary Convection under Microgravity Conditions

doi: 10.11728/cjss2024.03.2023-0105 cstr: 32142.14.cjss2024.03.2023-0105
  • Received Date: 2023-09-25
  • Accepted Date: 2024-05-13
  • Rev Recd Date: 2023-11-26
  • Available Online: 2024-01-02
  • In order to reveal the flow characteristics and evolution law of PCM liquid-bridge phase transition under microgravity conditions, the evolution process of solid-liquid interface during PCM liquid-bridge phase transition under different working conditions was numerically studied based on numerical simulation method. The effects of different height-diameter ratio and temperature difference on the shape of liquid bridge, the evolution law of solid-liquid interface, phase transition velocity and thermal capillary flow were analyzed. The results show that under the condition of large temperature difference, the thermal capillary flow is more intense, the phase transition speed of the phase change material at the outer wall is faster, and the angle between the phase change interface at the outer wall and the wall is smaller. Under the condition of large aspect ratio, the same effect will be achieved, and more vortex cell structures will be generated, and the thermal capillary convection effect is more obvious. The results show that strengthening PCM phase transition through fluid interface thermal capillary effect under microgravity conditions is an effective method.

     

  • loading
  • [1]
    YOU M, ZHANG X X, LI W, et al. Effects of MicroPCMs on the fabrication of MicroPCMs/polyurethane composite foams[J]. Thermochimica Acta, 2008, 472(1/2): 20-24
    [2]
    HASNAIN S M. Review on sustainable thermal energy storage technologies, Part I: heat storage materials and techniques[J]. Energy Conversion and Management, 1998, 39(11): 1127-1138 doi: 10.1016/S0196-8904(98)00025-9
    [3]
    LANE G A, SHAMSUNDAR N. Solar heat storage: latent heat materials, Vol. I: background and scientific principles[J]. Journal of Solar Energy Engineering, 1983, 105(4): 467
    [4]
    SÁNCHEZ P S, EZQUERRO J M, FERNÁNDEZ J, et al. Thermocapillary effects during the melting of phase-change materials in microgravity: steady and oscillatory flow regimes[J]. Journal of Fluid Mechanics, 2021, 908: A20 doi: 10.1017/jfm.2020.852
    [5]
    李杰, 杨志刚, 毛科, 等. 微重力下单晶硅生长中热毛细对流的控制研究[J]. 重庆大学学报(自然科学版), 2002, 25(3): 97-100

    LI Jie, YANG Zhigang, MAO Ke, et al. Study on the reduction of thermocapillary convection of the single-crystal growth of silicon under microgravity[J]. Journal of Chongqing University (Natural Science Edition), 2002, 25(3): 97-100
    [6]
    MADRUGA S, MENDOZA C. Enhancement of heat transfer rate on phase change materials with thermocapillary flows[J]. The European Physical Journal Special Topics, 2017, 226(6): 1169-1176 doi: 10.1140/epjst/e2016-60207-7
    [7]
    MADRUGA S, MENDOZA C. Heat transfer performance and melting dynamic of a phase change material subjected to thermocapillary effects[J]. International Journal of Heat and Mass Transfer, 2017, 109: 501-510 doi: 10.1016/j.ijheatmasstransfer.2017.02.025
    [8]
    EZQUERRO J M, BELLO A, SÁNCHEZ P S, et al. The thermocapillary effects in phase change materials in microgravity experiment: design, preparation and execution of a parabolic flight experiment[J]. Acta Astronautica, 2019, 162: 185-196 doi: 10.1016/j.actaastro.2019.06.004
    [9]
    EZQUERRO J M, SÁNCHEZ P S, BELLO A, et al. Experimental evidence of thermocapillarity in phase change materials in microgravity: measuring the effect of Marangoni convection in solid/liquid phase transitions[J]. International Communications in Heat and Mass Transfer, 2020, 113: 104529 doi: 10.1016/j.icheatmasstransfer.2020.104529
    [10]
    DUAN Li, WANG Jia, KANG Qi. Research on Space and Ground Experiments of Liquid Bridge Thermocapillary Convection [C]//Summary of Papers at the 9th National Conference on Fluid Mechanics Nanjing: Fluid Mechanics Professional Committee of the Chinese Society of Mechanics, 2016 (段俐, 王佳, 康琦. 液桥热毛细对流空间和地面实验研究[C]//第九届全国流体力学学术会议论文摘要集. 南京: 中国力学学会流体力学专业委员会, 2016
    [11]
    张迪, 段俐, 康琦. 实践十号卫星项目——热毛细对流振荡特征的地面研究[J]. 力学与实践, 2016, 38(1): 43-48 doi: 10.6052/1000-0879-15-315

    ZHANG Di, DUAN Li, KANG Qi. SJ-10 satellite project—ground research of oscillations characteristics of thermocapillary convection[J]. Mechanics in Engineering, 2016, 38(1): 43-48 doi: 10.6052/1000-0879-15-315
    [12]
    SÁNCHEZ P S, EZQUERRO J M, FERNÁNDEZ J, et al. Thermocapillary effects during the melting of phase change materials in microgravity: heat transport enhancement[J]. International Journal of Heat and Mass Transfer, 2020, 163: 120478 doi: 10.1016/j.ijheatmasstransfer.2020.120478
    [13]
    SLOBOZHANIN L A, PERALES J M. Stability of liquid bridges between equal disks in an axial gravity field[J]. Physics of Fluids A: Fluid Dynamics, 1993, 5(6): 1305-1314 doi: 10.1063/1.858567
    [14]
    SALGADO SÁNCHEZ P, EZQUERRO J M, PORTER J, et al. Effect of thermocapillary convection on the melting of phase change materials in microgravity: experiments and simulations[J]. International Journal of Heat and Mass Transfer, 2020, 154: 119717 doi: 10.1016/j.ijheatmasstransfer.2020.119717
    [15]
    CHERNATINSKY V I, BIRIKH R V, BRISKMAN V A, et al. Thermocapillary flows in long liquid bridges under microgravity[J]. Advances in Space Research, 2002, 29(4): 619-624 doi: 10.1016/S0273-1177(01)00652-4
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article Metrics

    Article Views(437) PDF Downloads(35) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return