| Citation: | WANG Tingyu, LUO Bingxian, CHEN Yanhong, SHI Yurong, WANG Jingjing, LIU Siqing. Modeling Next 3-day Kp Index Forecasting with Neural Networks and Exploring the Application of Explainable AI (in Chinese). Chinese Journal of Space Science, 2024, 44(3): 437-445 doi: 10.11728/cjss2024.03.2023-0107 |
| [1] |
FANG T W, KUBARYK A, GOLDSTEIN D, et al. Space weather environment during the SpaceX starlink satellite loss in February 2022[J]. Space Weather, 2022, 20(11): e2022SW003193 doi: 10.1029/2022SW003193
|
| [2] |
罗冰显, 王荣兰, 刘卫, 等. “星链”卫星毁于地磁暴事件空间环境分析[J]. 国际太空, 2022(5): 35-39 doi: 10.3969/j.issn.1009-2366.2022.05.009
LUO Bingxian, WANG Ronglan, LIU Wei, et al. Analysis of the space environment in the event of the destruction of the Starlink satellite by a geomagnetic storm[J]. Space International, 2022(5): 35-39 doi: 10.3969/j.issn.1009-2366.2022.05.009
|
| [3] |
MATZKA J, STOLLE C, YAMAZAKI Y, et al. The geomagnetic Kp index and derived indices of geomagnetic activity[J]. Space Weather, 2021, 19(5): e2020SW002641 doi: 10.1029/2020SW002641
|
| [4] |
WING S, JOHNSON J R, JEN J, et al. Kp forecast models[J]. Journal of Geophysical Research: Space Physics, 2005, 110 (A4): A04203. DOI: 10.1029/2004JA010500
|
| [5] |
WINTOFT P, WIK M, MATZKA J, et al. Forecasting Kp from solar wind data: input parameter study using 3-hour averages and 3-hour range values[J]. Journal of Space Weather and Space Climate, 2017, 7: A29 doi: 10.1051/swsc/2017027
|
| [6] |
TAN Y, HU Q H, WANG Z, et al. Geomagnetic index Kp forecasting with LSTM[J]. Space Weather, 2018, 16(4): 406-416 doi: 10.1002/2017SW001764
|
| [7] |
肖建军, 龚建村. 国外空间天气保障能力建设及对我国的启示[J]. 航天器环境工程, 2015, 32(1): 9-13 doi: 10.3969/j.issn.1673-1379.2015.01.002
XIAO Jianjun, GONG Jiancun. Foreign space weather support capability building and the enlightenments to our country[J]. Spacecraft Environment Engineering, 2015, 32(1): 9-13 doi: 10.3969/j.issn.1673-1379.2015.01.002
|
| [8] |
LI Rong, QUAN Lin, LI Ling, et al. Review on status and development of space weather services[J/OL]. Progress in Geophysics, (2023-06-27)[2023-09-15]. https://kns.cnki.net/kcms2/article/abstract?v=3uoqIhG8C45S0n9fL2suRadTyEVl2pW9UrhTDCdPD66mi5bQfuHu-RxLnEeZBXUV7crkn5fWLWA2JP2zYD9YfcusDT2ApoMe&uniplatform=NZKPT
|
| [9] |
WANG J J, LUO B X, LIU S Q, et al. A machine learning-based model for the next 3-day geomagnetic index (Kp) forecast[J]. Frontiers in Astronomy and Space Sciences, 2023, 10: 1082737 doi: 10.3389/fspas.2023.1082737
|
| [10] |
SHPRITS Y Y, VASILE R, ZHELAVSKAYA I S. Nowcasting and predicting the Kp index using historical values and real-time observations[J]. Space Weather, 2019, 17(8): 1219-1229 doi: 10.1029/2018SW002141
|
| [11] |
BERNOUX G, BRUNET A, BUCHLIN É, et al. Forecasting the geomagnetic activity several days in advance using neural networks driven by solar EUV imaging[J]. Journal of Geophysical Research: Space Physics, 2022, 127(10): e2022JA030868 doi: 10.1029/2022JA030868
|
| [12] |
3-Day forecast | NOAA / NWS Space Weather Prediction Center[EB/OL]. [2023-09-15]. https://www.swpc.noaa.gov/products/3-day-forecast
|
| [13] |
Forecast Kp index–space weather[EB/OL]. [2023-09-15]. https://spaceweather.gfz-potsdam.de/products-data/forecasts/Kp-index-forecast
|
| [14] |
胡晓彦, 徐寄遥, 邹自明. “大数据&人工智能”驱动的空间天气科研范式变革初步探索[J]. 数据与计算发展前沿, 2023, 5(2): 24-36
HU Xiaoyan, XU Jiyao, ZOU Ziming. Preliminary study on paradigm shift in space weather research driven by big data and artificial intelligence[J]. Frontiers of Data & Computing, 2023, 5(2): 24-36
|
| [15] |
HAM Y G, KIM J H, LUO J J. Deep learning for multi-year ENSO forecasts[J]. Nature, 2019, 573(7775): 568-572 doi: 10.1038/s41586-019-1559-7
|
| [16] |
ZHANG A X, FU T M, FENG X, et al. Deep learning-based ensemble forecasts and predictability assessments for surface ozone pollution[J]. Geophysical Research Letters, 2023, 50(8): e2022GL102611 doi: 10.1029/2022GL102611
|
| [17] |
WANG T Y, HUANG P. Superiority of a convolutional neural network model over dynamical models in predicting central pacific ENSO[J]. Advances in Atmospheric Sciences, 2024, 41(1): 141-154 doi: 10.1007/s00376-023-3001-1
|
| [18] |
SUNDARARAJAN M, TALY A, YAN Q Q. Axiomatic attribution for deep networks[C]//Proceedings of the 34th International Conference on Machine Learning. Sydney: JMLR. org, 2017: 3319-3328
|
| [19] |
DAS A, RAD P. Opportunities and challenges in explainable artificial intelligence (XAI): a survey[OL]. arXiv preprint arXiv: 2006.11371, 2020
|
| [20] |
LU Z, PU H M, WANG F C, et al. The expressive power of neural networks: a view from the width[OL]. arXiv preprint arXiv: 1709.02540, 2017
|
| [21] |
PAPITASHVILI N E, KING J H. OMNI 1-min data set[DS/OL]. NASA Space Physics Data Facility, 2020[2023-09-25]. https://hpde.io/NASA/NumericalData/OMNI/HighResolutionObservations/Version1/PT1M
|
| [22] |
KNIPP D J, GROSS N A. Understanding space weather and the physics behind it[C]//Proceedings of the American Geophysical Union, Fall Meeting 2011. Washington D C: AGU, 2011
|
| [23] |
AUGUSTO C R A, NAVIA C E, DE OLIVEIRA M N, et al. The 2015 summer solstice storm: one of the major geomagnetic storms of solar cycle 24 observed at ground level[J]. Solar Physics, 2018, 293(5): 84 doi: 10.1007/s11207-018-1303-8
|
| [24] |
HAJRA R, TSURUTANI B T, LAKHINA G S. The complex space weather events of 2017 September[J]. The Astrophysical Journal, 2020, 899(1): 3 doi: 10.3847/1538-4357/aba2c5
|
| [25] |
BADRUDDIN B, ASLAM O P M, DEROUICH M, et al. Forbush decreases and geomagnetic storms during a highly disturbed solar and interplanetary period, 4–10 September 2017[J]. Space Weather, 2019, 17(3): 487-496 doi: 10.1029/2018SW001941
|
| [26] |
HAM Y G, KIM J H, MIN S K, et al. Anthropogenic fingerprints in daily precipitation revealed by deep learning[J]. Nature, 2023, 622(7982): 301-307 doi: 10.1038/s41586-023-06474-x
|