| Citation: | CHENG Shanshan, SHE Wei, GAO Yuyue, ZHOU Yan, WEN Shifeng, ZHOU Cheng. Research and Prospect of In-situ Construction Materials on Mars (in Chinese). Chinese Journal of Space Science, 2024, 44(3): 511-524 doi: 10.11728/cjss2024.03.2023-0137 |
| [1] |
MUSK E. Making life multi-planetary[J]. New Space, 2018, 6(1): 2-11 doi: 10.1089/space.2018.29013.emu
|
| [2] |
ZHENG W, HSU H, ZHONG M, et al. China’s first-phase Mars exploration program: Yinghuo-1 orbiter[J]. Planetary and Space Science, 2013, 86: 155-159 doi: 10.1016/j.pss.2011.02.008
|
| [3] |
VADIM Z, VLADIMIR P. Russian nuclear rocket engine design for mars exploration[J]. Tsinghua Science and Technology, 2007, 12(3): 256-260 doi: 10.1016/S1007-0214(07)70038-X
|
| [4] |
SCOTT A N, OZE C. Constructing mars: concrete and energy production from serpentinization products[J]. Earth and Space Science, 2018, 5(8): 364-370 doi: 10.1029/2017EA000353
|
| [5] |
BENAROYA H. Lunar habitats: a brief overview of issues and concepts[J]. REACH, 2017, 7-8: 14-33 doi: 10.1016/j.reach.2018.08.002
|
| [6] |
CUCINOTTA F A, HU S W, SCHWADRON N A, et al. Space radiation risk limits and Earth-Moon-Mars environmental models[J]. Space Weather, 2010, 8(12): S00E09
|
| [7] |
OBERST J, NAKAMURA Y. A seismic risk for the lunar base[C]//Proceedings of the 2nd Conference on Lunar Bases and Space Activities of the 21st Century. Houston: NASA, 1992
|
| [8] |
SEOL M L, HAN J W, MOON D I, et al. Triboelectric nanogenerator for Mars environment[J]. Nano Energy, 2017, 39: 238-244 doi: 10.1016/j.nanoen.2017.07.004
|
| [9] |
NEALY J E, WILSON J W, TOWNSEND L W. Solar-flare Shielding with Regolith at A Lunar-base site[R]. Hampton: NASA, 1988
|
| [10] |
KANAMORI H, MATSUMOTO S, ISHIKAWAD N. Long-term properties of mortar exposed to a vacuum[J]. ACI Special Publication, 1991, 125: 57-70
|
| [11] |
SCHEERBAUM G. In-Situ manufacture of martian construction materials[M]//Space and Robotics 2000. Reston: American Society of Civil Engineers, 2000: 934-940
|
| [12] |
ZUBRIN R. The Mars direct plan[J]. Scientific American, 2000, 282(3): 52-55 doi: 10.1038/scientificamerican0300-52
|
| [13] |
DUFFIE J A, BECKMAN W A. Solar Engineering of Thermal Processes[M]. Hoboken: John Wiley & Sons, Inc. , 2013
|
| [14] |
KHOSHNEVIS B, CARLSON A, THANGAVELU M. ISRU-based Robotic Construction Technologies for Lunar and Martian Infrastructures[R]. Los Angles: NASA, 2017
|
| [15] |
SCOTT A, OZE C, HUGHES M W, et al. Performance of a magnesia silica cement for Martian construction[M]//MALLA R B, GOLDBERG R K, ROBERTS A D. Earth and Space 2018: Engineering for Extreme Environments. Reston: American Society of Civil Engineers, 2018: 629-636
|
| [16] |
CANNON K M, MUSTARD J F. Preserved glass-rich impactites on Mars[J]. Geology, 2015, 43(7): 635-638 doi: 10.1130/G36953.1
|
| [17] |
ORTIZ A R, RYGALOV V Y, DE LEÓN P. Radiation protection strategy development for mars surface exploration[C]//Proceedings of the 45th International Conference on Environmental Systems. Bellevue: ICES, 2015
|
| [18] |
ZENT A P, HECHT M H, COBOS D R, et al. Thermal and electrical conductivity probe (TECP) for phoenix[J]. Journal of Geophysical Research: Planets, 2009, 114(E3): E00A27
|
| [19] |
TAYLOR L A, MEEK T T. Microwave sintering of lunar soil: properties, theory, and practice[J]. Journal of Aero s pace Engineering, 2005, 18(3): 188-196 doi: 10.1061/(ASCE)0893-1321(2005)18:3(188)
|
| [20] |
MCKAY D S, ALLEN C C. Concrete—a practical construction material for Mars[M]//Engineering, Construction, and Operations in Space V. Reston: American Society of Civil Engineers, 1996: 566-570
|
| [21] |
CLIFTON E W. Design and construction for a permanent presence on Mars[C]//Proceedings of the Fifth Case for Mars Conference. Boulder: the University of Colorado. 2000
|
| [22] |
MELLEROWICZ B, ZACNY K, PALMOWSKI J, et al. RedWater: water mining system for Mars[J]. New Space, 2022, 10(2): 166-186 doi: 10.1089/space.2021.0057
|
| [23] |
VAKKADA RAMACHANDRAN A, ZORZANO M P, MARTIN-TORRES J. Experimental investigation of the atmosphere-regolith water cycle on present-day Mars[J]. Sensors, 2021, 21(21): 7421 doi: 10.3390/s21217421
|
| [24] |
PIQUEUX S, BUZ J, EDWARDS C S, et al. Widespread shallow water ice on Mars at high latitudes and midlatitudes[J]. Geophysical Research Letters, 2019, 46(24): 14290-14298 doi: 10.1029/2019GL083947
|
| [25] |
BARKATT A, OKUTSU M. Obtaining elemental sulfur for Martian sulfur concrete[J]. Journal of Chemical Research, 2022. DOI: 10.1177/17475198221080729
|
| [26] |
WAN L. Experimental and Computational Analysis of the Behavior of Ultra High Performance Concrete, Prestressed Concrete, and Waterless Martian Concrete at Early Age and Beyond[D]. Evanston: Northwestern University, 2015
|
| [27] |
TOUTANJI H, GLENN-LOPER B, SCHRAYSHUEN B. Strength and durability performance of waterless lunar concrete[C]//Proceedings of the 43rd AIAA Aerospace Sciences Meeting and Exhibit. Reno: AIAA, 2005
|
| [28] |
WAN L, WENDNER R, CUSATIS G. A novel material for in situ construction on Mars: experiments and numerical simulations[J]. Construction and Building Materials, 2016, 120: 222-231 doi: 10.1016/j.conbuildmat.2016.05.046
|
| [29] |
TOUTANJI H A, GRUGEL R N. Performance of “waterless concrete”[M]//Concrete Solutions. London: CRC Press, 2009: 229-232
|
| [30] |
GRUGEL R N, TOUTANJI H. Sulfur “concrete” for lunar applications – Sublimation concerns[J]. Advances in Space Research, 2008, 41(1): 103-112 doi: 10.1016/j.asr.2007.08.018
|
| [31] |
MANI P, GUPTA A K, KRISHNAMOORTHY S. Comparative study of epoxy and polyester resin-based polymer concretes[J]. International Journal of Adhesion and Adhesives, 1987, 7(3): 157-163 doi: 10.1016/0143-7496(87)90071-6
|
| [32] |
OUSSAMA E, ELHEM G, VALÉRIE M, et al. Mechanical and physical properties of epoxy polymer concrete after exposure to temperatures up to 250℃[J]. Construction and Building Materials, 2012, 27(1): 415-424 doi: 10.1016/j.conbuildmat.2011.07.027
|
| [33] |
BEDI R, CHANDRA R, SINGH S P. Mechanical properties of polymer concrete[J]. Journal of Composites, 2013, 2013: 948745
|
| [34] |
BISBY L A, GREEN M F, KODUR V K R. Response to fire of concrete structures that incorporate FRP[J]. Progress in Structural Engineering and Materials, 2005, 7(3): 136-149 doi: 10.1002/pse.198
|
| [35] |
TAVARES C M L, RIBEIRO M C S, FERREIRA A J M, et al. Creep behaviour of FRP-reinforced polymer concrete[J]. Composite Structures, 2002, 57(1/2/3/4): 47-51
|
| [36] |
PROVIS J L, VAN DEVENTER J S J. Geopolymers: Structures, Processing, Properties and Industrial Applications[M]. Amsterdam: Elsevier, 2009
|
| [37] |
RANGAN B V. Geopolymer concrete for environmental protection[J]. The Indian Concrete Journal, 2014, 88(4): 41-59
|
| [38] |
SANKAR K, STYNOSKI P, AL-CHAAR G K, et al. Sodium silicate activated slag-fly ash binders: Part I – Processing, microstructure, and mechanical properties[J]. Journal of the American Ceramic Society, 2018, 101(6): 2228-2244 doi: 10.1111/jace.15391
|
| [39] |
THOKCHOM S, MANDAL K K, GHOSH S. Effect of Si/Al ratio on performance of fly ash geopolymers at elevated temperature[J]. Arabian Journal for Science and Engineering, 2012, 37(4): 977-989 doi: 10.1007/s13369-012-0230-5
|
| [40] |
MONTES C, BROUSSARD K, GONGRE M, et al. Evaluation of lunar regolith geopolymer binder as a radioactive shielding material for space exploration applications[J]. Advances in Space Research, 2015, 56(6): 1212-1221 doi: 10.1016/j.asr.2015.05.044
|
| [41] |
NEVES J M, RAMANATHAN S, SURANENI P, et al. Characterization, mechanical properties, and microstructural development of lunar regolith simulant-portland cement blended mixtures[J]. Construction and Building Materials, 2020, 258: 120315 doi: 10.1016/j.conbuildmat.2020.120315
|
| [42] |
WANG K T, TANG Q, CUI X M, et al. Development of near-zero water consumption cement materials via the geopolymerization of tektites and its implication for lunar construction[J]. Scientific Reports, 2016, 6: 29659 doi: 10.1038/srep29659
|
| [43] |
PILEHVAR S, ARNHOF M, ERICHSEN A, et al. Investigation of severe lunar environmental conditions on the physical and mechanical properties of lunar regolith geopolymers[J]. Journal of Materials Research and Technology, 2021, 11: 1506-1516 doi: 10.1016/j.jmrt.2021.01.124
|
| [44] |
BERNAL S A, MEJÍA DE GUTIÉRREZ R, PROVIS J L. Engineering and durability properties of concretes based on alkali-activated granulated blast furnace slag/metakaolin blends[J]. Construction and Building Materials, 2012, 33: 99-108 doi: 10.1016/j.conbuildmat.2012.01.017
|
| [45] |
ALEXIADIS A, ALBERINI F, MEYER M E. Geopolymers from lunar and Martian soil simulants[J]. Advances in Space Research, 2017, 59(1): 490-495 doi: 10.1016/j.asr.2016.10.003
|
| [46] |
BOYNTON W V, FELDMAN W C, SQUYRES S W, et al. Distribution of hydrogen in the near surface of Mars: evidence for subsurface ice deposits[J]. Science, 2002, 297(5578): 81-85 doi: 10.1126/science.1073722
|
| [47] |
LIU N, QIU J S. Xerogel-based building material (XBM): potential for construction on Mars base and other resourceless sites[C]//Proceedings of SPIE 12044, Behavior and mechanics of multifunctional materials. Long Beach: SPIE, 2022: 120440B
|
| [48] |
LIU N, QIU J S. Effect of the freezing temperature and near-vacuum air pressure of Mars on the mechanical properties and microstructure of hydrogel-based concrete (HBC)[J]. Extreme Mechanics Letters, 2022, 56: 101864 doi: 10.1016/j.eml.2022.101864
|
| [49] |
QIU J S, ARTIER J, COOK S, et al. Engineering living building materials for enhanced bacterial viability and mechanical properties[J]. Iscience, 2021, 24(2): 102083 doi: 10.1016/j.isci.2021.102083
|
| [50] |
SIMONDS C H. Hot pressing of lunar soil and qualification for manned applications[C]//Proceedings of the 2nd Conference on Lunar Bases and Space Activities of the 21st Century. Houston: NASA, 1988
|
| [51] |
PLETKA B J. Processing of lunar basalt materials[M]//LEWIS J S, MATTHEWS M S, GUERRIERI M L. Resources of Near-Earth Space. London: The University of Arizona Press, 1993: 325
|
| [52] |
SRIVASTAVA V, LIM S, ANAND M. Microwave processing of lunar soil for supporting longer-term surface exploration on the Moon[J]. Space Policy, 2016, 37: 92-96 doi: 10.1016/j.spacepol.2016.07.005
|
| [53] |
MCSWEEN H Y JR, TAYLOR G J, WYATT M B. Elemental composition of the martian crust[J]. Science, 2009, 324(5928): 736-739 doi: 10.1126/science.1165871
|
| [54] |
KADING B, STRAUB J. Utilizing in-situ resources and 3D printing structures for a manned Mars mission[J]. Acta Astronautica, 2015, 107: 317-326 doi: 10.1016/j.actaastro.2014.11.036
|
| [55] |
HAPPEL J A. Indigenous materials for lunar construction[J]. Applied Mechanics Reviews, 1993, 46(6): 313-325 doi: 10.1115/1.3120360
|
| [56] |
BINDER A B, CULP M A, TOUPS L D. Lunar derived construction materials: cast basalt[C]//Proceedings of Engineering, Construction, and Operations in Space II. Albuquerque: ASCE, 1990
|
| [57] |
ROGERS W P, STURE S. Indigenous lunar construction materials[C]//Proceedings of Center for Space Construction Third Annual Symposium. Boulder, Colo: Space Construction Activities, 1991
|
| [58] |
ALLEN C C, HINES J A, MCKAY D S, et al. Sintering of lunar glass and basalt[C]//Proceedings of the 3rd International Conference. Denver: American Society of Civil Engineers, 1992: 1209-1218
|
| [59] |
AULESA V. Architecture of lunar habitats[C]//Proceedings of the Fourth International Conference on Exploration and Utilisation of the Moon. Noordwijk: ESTEC, 2000
|
| [60] |
SOBOLEV A V, DMITRIEV L V, BARSUKOV V L, et al. The formation conditions of the high-magnesium olivines from the monomineralic fraction of Luna 24 regolith[C]//Proceedings of the 11th Lunar and Planetary Science Conference. New York: Pergamon Press, 1980
|
| [61] |
SCHLEPPI J, GIBBONS J, GROETSCH A, et al. Manufacture of glass and mirrors from lunar regolith simulant[J]. Journal of Materials Science, 2019, 54(5): 3726-3747 doi: 10.1007/s10853-018-3101-y
|
| [62] |
BLACIC J D. Mechanical properties of lunar materials under anhydrous, hard vacuum conditions: applications of lunar glass structural components[C]//Proceedings of the Lunar Bases and Space Activities of the 21st Century. Houston: Lunar and Planetary Institute, 1985
|
| [63] |
AGOSTO W N, WICKMAN J H, JAMES E. Lunar cements/concretes for orbital structures[C]//Proceedings of Engineering, Construction, and Operations in Space. New York: ASCE, 1988: 157-168
|
| [64] |
TUCKER D S, ETHRIDGE E C, CURREIR P. Glass Fiber Processing for the Moon/Mars Program: Center Director’s Discretionary Fund Final Report[R]. Washington: NASA, 1992
|
| [65] |
GROSSMAN K. Regolith-Based Construction Materials for Lunar and Martian Colonies[D]. Florida: University of Central Florida, 2018
|
| [66] |
EHLMANN B L, MUSTARD J F, MURCHIE S L, et al. Subsurface water and clay mineral formation during the early history of Mars[J]. Nature, 2011, 479(7371): 53-60 doi: 10.1038/nature10582
|
| [67] |
KARL D, KAMUTZKI F, ZOCCA A, et al. Towards the colonization of Mars by in-situ resource utilization: slip cast ceramics from Martian soil simulant[J]. PLoS One, 2018, 13(10): e0204025 doi: 10.1371/journal.pone.0204025
|
| [68] |
KARL D, DUMINY T, LIMA P, et al. Clay in situ resource utilization with Mars global simulant slurries for additive manufacturing and traditional shaping of unfired green bodies[J]. Acta Astronautica, 2020, 174: 241-253 doi: 10.1016/j.actaastro.2020.04.064
|
| [69] |
SONG L, XU J, FAN S Q, et al. Vacuum sintered lunar regolith simulant: pore-forming and thermal conductivity[J]. Ceramics International, 2019, 45(3): 3627-3633 doi: 10.1016/j.ceramint.2018.11.023
|
| [70] |
KARACASULU L, KARL D, GURLO A, et al. Cold sintering as a promising ISRU technique: a case study of Mars regolith simulant[J]. Icarus, 2023, 389: 115270 doi: 10.1016/j.icarus.2022.115270
|
| [71] |
KARL D, CANNON K M, GURLO A. Review of space resources processing for Mars missions: Martian simulants, regolith bonding concepts and additive manufacturing[J]. Open Ceramics, 2022, 9: 100216 doi: 10.1016/j.oceram.2021.100216
|
| [72] |
TROEMNER M, RAMYAR E, MARRERO R, et al. Marscrete: a Martian concrete for additive construction applications utilizing in situ resources[M]//Earth and Space 2021: Space Exploration, Utilization, Engineering, and Construction in Extreme Environments. Reston: American Society of Civil Engineers, 2021: 801-807
|
| [73] |
GARNOCK B, BERNOLD L. Experimental study of hollow-core beams made with waterless concrete[M]//Earth and Space 2012: Engineering, Science, Construction, and Operations in Challenging Environments. Reston: American Society of Civil Engineers, 2012: 119-127
|
| [74] |
MILLS J N, KATZAROVA M, WAGNER N J. Comparison of lunar and Martian regolith simulant-based geopolymer cements formed by alkali-activation for in-situ resource utilization[J]. Advances in Space Research, 2022, 69(1): 761-777 doi: 10.1016/j.asr.2021.10.045
|
| [75] |
SCOTT A, OZE C, HUGHES M W. Magnesium-based cements for Martian construction[J]. Journal of Aerospace Engineering, 2020, 33(4): 04020019 doi: 10.1061/(ASCE)AS.1943-5525.0001132
|