| Citation: | LI Yijian, HUANG Wanning, ZHOU Jianghua, ZHANG Xiaojun, ZHANG Hangyue. Development Status and Prospects of Near Space Observatories (in Chinese). Chinese Journal of Space Science, 2024, 44(6): 1068-1085 doi: 10.11728/cjss2024.06.2023-0145 |
| [1] |
王海名. 美国国家科学院发布天文学和天体物理学十年调查报告[J]. 空间科学学报, 2022, 42(1): 5-8
WANG Haiming. The National Academy of Sciences releases its Decadal Survey of Astronomy and Astrophysics[J]. Journal of Space Science, 2022, 42(1): 5-8
|
| [2] |
冉凡辉. 基于RTS2的天文选址望远镜远程控制系统研究与设计[D]. 昆明: 昆明理工大学, 2015
RAN Fanhui. Research and Design of Remote Control System for Astronomical Site Selection Telescope Based on RTS2[D]. Kunming: Kunming University of Science and Technology, 2015
|
| [3] |
刘浩成. 基于多源遥感的冷湖区域天文台选址地理环境适宜度研究[D]. 西宁: 青海大学, 2023
LIU Haocheng. Study on Geographical Environment Suitability of Observatory Site Selection Based on Multi-source Remote Sensing at Lenghu Region[D]. Xining: Qinghai University, 2023
|
| [4] |
COSTA J, BOCK A, EMMART C, et al. Interactive visualization of atmospheric effects for celestial bodies[J]. IEEE Transactions on Visualization and Computer Graphics, 2021, 27(2): 785-795 doi: 10.1109/TVCG.2020.3030333
|
| [5] |
RODIMOVA O B. Carbon dioxide and water vapor continuum absorption in the infrared spectral region[J]. Atmospheric and Oceanic Optics, 2018, 31(6): 564-569 doi: 10.1134/S1024856018060143
|
| [6] |
ZHANG L H, XIONG R, CHEN J, et al. Optical image compression and encryption transmission-based ondeep learning and ghost imaging[J]. Applied Physics B, 2020, 126(1): 18 doi: 10.1007/s00340-019-7362-1
|
| [7] |
BAUER S E, IM U, MEZUMAN K, et al. Desert dust, industrialization, and agricultural fires: Health impacts of outdoor air pollution in Africa[J]. Journal of Geophysical Research: Atmospheres, 2019, 124(7): 4104-4120 doi: 10.1029/2018JD029336
|
| [8] |
顾逸东. 关于空间科学发展的一些思考[J]. 中国科学院院刊, 2022, 37(8): 1031-1049
GU Yidong. Thoughts on space science development[J]. Bulletin of Chinese Academy of Sciences, 2022, 37(8): 1031-1049
|
| [9] |
白青江, 范全林, 时蓬, 等. 关于新一代旗舰型科学卫星WFIRST发展的分析[J]. 科技导报, 2021, 39(11): 38-45
BAI Qingjiang, FAN Quanlin, SHI Peng, et al. On the development of NASA’s next generation flagship scientific mission WFIRST[J]. Science & Technology Review, 2021, 39(11): 38-45
|
| [10] |
吴季, 王赤, 范全林. 中国科学院空间科学战略性先导科技专项实施11年回顾与展望[J]. 中国科学院院刊, 2022, 37(8): 1019-1030
WU Ji, WANG Chi, FAN Quanlin. Review on 11 years of implementation of Strategic Priority Program (SPP) on space science and its prospect[J]. Bulletin of Chinese Academy of Sciences, 2022, 37(8): 1019-1030
|
| [11] |
CHANG J, AMBROSI G, AN Q, et al. The DArk matter particle explorer mission[J]. Astroparticle Physics, 2017, 95: 6-24 doi: 10.1016/j.astropartphys.2017.08.005
|
| [12] |
ZHANG S N, LI T P, LU F J, et al. Overview to the hard X-ray modulation telescope (Insight-HXMT) satellite[J]. Science China Physics, Mechanics & Astronomy, 2020, 63 (4): 249502
|
| [13] |
李新乔, 文向阳, 安正华, 等. GECAM卫星有效载荷介绍[J]. 中国科学(物理学 力学 天文学), 2020, 50 (12): 80-96
LI Xinqiao, WEN Xiangyang, AN Zhenghua, et al. The GECAM and its payload[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2020, 50 (12): 80-96
|
| [14] |
GAN W Q, FENG L, SU Y. A Chinese solar observatory in space[J]. Nature Astronomy, 2022, 6(1): 165 doi: 10.1038/s41550-021-01593-9
|
| [15] |
Yuan W, Zhang C, Feng H, et al. Einstein probe — a small mission to monitor and explore the dynami X-ray universe[J]. Journal of Huazhong University of Science & Technology, 2015, 23(4): 383-6
|
| [16] |
黄宛宁, 张晓军, 李智斌, 等. 临近空间科学技术的发展现状及应用前景[J]. 科技导报, 2019, 37(21): 46-62
HUANG Wanning, ZHANG Xiaojun, LI Zhibin, et al. Development status and application prospect of near space science and technology[J]. Science & Technology Review, 2019, 37(21): 46-62
|
| [17] |
SMITH-PIERCE M C, CHAROENBOONVIVAT Y C, SHUKLA D, et al. High altitude aerodynamic reflectors to counter climate change[C]//2018 Applied Aerodynamics Conference. Atlanta: American Institute of Aeronautics, 2018
|
| [18] |
李智斌, 黄宛宁, 张钊, 等. 2020年临近空间科技热点回眸[J]. 科技导报, 2021, 39(1): 54-68
LI Zhibin, HUANG Wanning, ZHANG Zhao, et al. Summary of the hot spots of near space science and technology in 2020[J]. Science & Technology Review, 2021, 39(1): 54-68
|
| [19] |
顾逸东. 气球科学观测100年[J]. 现代物理知识, 2020, 32(2): 3-12
GU Yidong. 100 years of balloon science observation[J]. Modern Physics Knowledge, 2020, 32(2): 3-12
|
| [20] |
黄宛宁, 李智斌, 张钊, 等. 2019年临近空间科学技术热点回眸[J]. 科技导报, 2020, 38(1): 38-46
HUANG Wanning, LI Zhibin, ZHANG Zhao, et al. Summary of hot spots of near space vehicles in 2019[J]. Science & Technology Review, 2020, 38(1): 38-46
|
| [21] |
李智斌, 黄宛宁, 张钊. 2018年临近空间科学热点回眸[J]. 科技导报, 2019, 37(1): 44-51
LI Zhibin, HUANG Wanning, ZHANG Zhao. Summary of the hot spots of near space vehicles in 2018[J]. Science & Technology Review, 2019, 37(1): 44-51
|
| [22] |
MCCARTHY D J. Operating characteristics of the stratoscope II balloon-borne telescope[J]. IEEE Transactions on Aerospace and Electronic Systems, 1969, AES-5(2): 323-329 doi: 10.1109/TAES.1969.309922
|
| [23] |
SMITH JR I S. Advancements in NASA balloon research and development[J]. Advances in Space Research, 1996, 17(9): 37-44 doi: 10.1016/0273-1177(95)00674-4
|
| [24] |
陈旭. 长时高空气球的研制发展[J]. 航天器工程, 2007, 16(4): 83-88
CHEN Xu. Development of long duration high altitude balloon[J]. Spacecraft Engineering, 2007, 16(4): 83-88
|
| [25] |
祝榕辰, 王生, 姜鲁华. 长航时超压气球技术的发展现状[C]//2014年中国浮空器大会. 哈尔滨: 中国航空学会, 2014
ZHU Rongchen, WANG Sheng, JIANG Luhua. Development status of long endurance superpressure balloon technology[C]//Chinese Aeronautical Society. Harbin: Chinese Aeronautical Society, 2014
|
| [26] |
ORR G D. The long duration balloon vehicle (LDBV) flight system development[C]//34th Aerospace Sciences Meeting and Exhibit. Reno: AIAA, 2012
|
| [27] |
BINNS W R, BOSE R G, BRAUN D L, et al. The SUPERTIGER instrument: measurement of elemental abundances of ultra-heavy galactic cosmic rays[J]. The Astrophysical Journal, 2014, 788(1): 18 doi: 10.1088/0004-637X/788/1/18
|
| [28] |
RAINWATER E L, SMITH M S. Ultra high altitude balloons for medium-to-large payloads[J]. Advances in Space Research, 2004, 33(10): 1648-1652 doi: 10.1016/j.asr.2003.07.037
|
| [29] |
LECINSKI A, CARD G, KNÖLKER M, et al. The design and performance of the gondola pointing system for the sunrise II balloon-borne stratospheric solar observatory[J]. Journal of Astronomical Instrumentation, 2017, 6(2): 1740007 doi: 10.1142/S2251171717400074
|
| [30] |
刘艳霄, 宋腾飞, 张涛, 等. 欧洲球载太阳望远镜SUNRISE及相关研究成果简介[J]. 天文研究与技术, 2021, 18(3): 314-336
LIU Yanxiao, SONG Tengfei, ZHANG Tao, et al. Overview of balloon-borne solar telescope-SUNRISE[J]. Astronomical Research & Technology, 2021, 18(3): 314-336
|
| [31] |
SHOJI Y, TAGUCHI M, NAKANO T, et al. FUJIN-2: balloon borne telescope for optical observation of planets[J]. Transactions of the Japan Society for Aeronautical and Space Sciences, Aerospace Technology Japan, 2016, 14(ists30): Pk_95-Pk_102 doi: 10.2322/tastj.14.Pk_95
|
| [32] |
顾逸东. 从高空气球到载人航天[J]. 现代物理知识, 2023, 35(S1): 192-199
GU Yidong. From high-altitude balloons to manned spaceflight[J]. Modern Physics Knowledge, 2023, 35(S1): 192-199
|
| [33] |
李惕碚, 顾逸东. 我国的高空科学气球与高能天文观测[J]. 自然杂志, 1984(3): 163-169, 240
LI Tibei, GU Yidong. China’s high altitude scientific balloon and high energy astronomical observation[J]. Nature Journal, 1984(3): 163-169, 240
|
| [34] |
卢方军. 从球载实验到慧眼卫星[J]. 现代物理知识, 2021, 33(2): 4-11
LU Fangjun. From ball-borne experiments to HXMT[J]. Modern Physics Knowledge, 2021, 33(2): 4-11
|
| [35] |
CHANG J, ADAMS J H, AHN H S, et al. An excess of cosmic ray electrons at energies of 300-800 GeV[J]. Nature, 2008, 456(7220): 362-365 doi: 10.1038/nature07477
|
| [36] |
叶祥明. 大型球载望远镜高精度姿态控制及指向技术研究[D]. 北京: 中国科学院北京天文台, 1999
YE Xiangming. Study on High-accuracy Attitude Control and Pointing Technology of A Large Balloon-borne Solar Telescope[D]. Beijing: National Astronomical Observatories, Chinese Academy of Sciences, 1999
|
| [37] |
林隽, 宋腾飞, 孙明哲, 等. 50 mm白光球载日冕仪: I. 基本结构与地面观测实验[J]. 中国科学: 物理学 力学 天文学, 2023, 53 (5): 154-180
LIN Jun, SONG Tengfei, SUN Mingzhe, et al. A 50-mm balloon-borne white-light coronagraph: Ⅰ. Basic structure and experiments on the ground[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2023, 53 (5): 154-180
|
| [38] |
李一健. 基于多敏感器组合的球载吊舱姿态控制技术研究[D]. 北京: 中国科学院大学, 2023
LI Yijian. Research on attitude control Technology of Balloon borne Pod Based on Multi-sensor Fusion[D]. Beijing: University of Chinese Academy of Sciences, 2023
|
| [39] |
王馨悦, 杜丹, 闫召爱, 等. 临近空间飞行平台青藏高原大气NO x原位观测实验[J]. 科学通报, 2022, 67(27): 3348-3356 doi: 10.1360/TB-2021-1279
WANG Xinyue, DU Dan, YAN Zhao’ai, et al. In situ observation of atmospheric NO x over Qinghai-Tibet Plateau by scientific experiment system in near space program[J]. Chinese Science Bulletin, 2022, 67(27): 3348-3356 doi: 10.1360/TB-2021-1279
|
| [40] |
LI L, SU J F, CHEN T, et al. Measurement of atmospheric conductivity on the Qinghai-Tibet Plateau in China[J]. Meteorology and Atmospheric Physics, 2022, 134(2): 40 doi: 10.1007/s00703-022-00870-0
|
| [41] |
祝榕辰, 王生. 超压气球研究与发展现状[C]//第二十四届全国空间探测学术交流会论文摘要集. 西安: 中国空间科学学会, 2011
ZHU Rongchen, WANG Sheng. Research and development status of superpressure balloons[C]//Summary of Papers at the 24th National Space Exploration Academic Exchange Conference. Xi’an: Chinese Society of Space Sciences, 2011
|
| [42] |
祝榕辰, 王生, 杨燕初, 等. 南瓜型超压气球球体设计与地面试验[C]//第四届高分辨率对地观测学术年会论文集. 北京: 高分辨率对地观测系统重大专项管理办公室 (中国科学院), 2017
ZHU Rongchen, WANG Sheng, YANG Yanchu, et al. Design and ground experiments of pumpkin shaped superpressure balloon spheres[C]//Proceedings of the 4th Academic Annual Conference on High Resolution Earth Observation. Beijing: Office for Major Special Management of High Resolution Earth Observation Systems; Chinese Academy of Sciences, 2017
|
| [43] |
YAJIMA N. A new design and fabrication approach for pressurized balloon[J]. Advances in Space Research, 2000, 26(9): 1357-1360 doi: 10.1016/S0273-1177(00)00060-0
|
| [44] |
GASKIN J A, SMITH I S, JONES W V. Introduction[J]. Journal of Astronomical Instrumentation, 2014, 3(2): 1403001 doi: 10.1142/S2251171714030019
|
| [45] |
祝榕辰. 超压气球实现临近空间首飞[J]. 现代物理知识, 2018, 30(1): 1
ZHU Rongchen. Superpressure balloons achieve their first near space flight[J]. Modern Physics Knowledge, 2018, 30(1): 1
|
| [46] |
CATHEY JR H M. Evolution of the NASA ultra long duration balloon[C]//AIAA Balloon Systems Conference. Williamsburg: AIAA, 2007
|
| [47] |
CALLADINE C R. Stability of the “Endeavour” balloon[J]. Studies in Applied Mechanics, 1988, 19: 133-149 doi: 10.1016/B978-0-444-70474-0.50011-2
|
| [48] |
卜亚楼, 蔡榕, 杨燕初, 等. 南瓜型超压气球展开稳定性研究[J]. 计算机仿真, 2023, 40(5): 56-63
BU Yalou, CAI Rong, YANG Yanchu, et al. Study on stability of pumpkin shape super pressure balloon deployment[J]. Computer Simulation, 2023, 40(5): 56-63
|
| [49] |
NAKASHINO K, SAITO Y, AKITA D, et al. Analytical study on the inflated shape of a superpressure balloon covered with a diamond-shaped net[J]. Advances in Space Research, 2023, 71(1): 705-719 doi: 10.1016/j.asr.2022.08.074
|
| [50] |
DEWEESE K D, WARD P R. Demonstration of a balloon borne arc-second pointer design[C]//36th COSPAR Scientific Assembly. Beijing: CNCOSPAR, 2006
|
| [51] |
HANAGUD A, SIMPSON J, LANZI R, et al. A solar pointing system for the Long Duration Balloon missions[C]//International Balloon Technology Conference. San Francisco: AIAA, 2012
|
| [52] |
STUCHLIK D W. The wallops arc second pointer-a balloon borne fine pointing system[C]//AIAA Balloon Systems Conference. Dallas: AIAA, 2015
|
| [53] |
STUCHLIK D W, LANZI R. The NASA wallops arc-second pointer (WASP) system for precision pointing of scientific balloon instruments and telescopes[C]//AIAA Balloon Systems Conference. Denver: AIAA, 2017
|
| [54] |
ABARR Q, AWAKI H, BARING M G, et al. XL-Calibur-a second-generation balloon-borne hard X-ray polarimetry mission[J]. Astroparticle Physics, 2021, 126 : 102529
|
| [55] |
ABARR Q, BEHESHTIPOUR B, BEILICKE M, et al. Performance of the X-Calibur hard X-ray polarimetry mission during its 2018/19 long-duration balloon flight[J]. Astroparticle Physics, 2022, 143: 102749 doi: 10.1016/j.astropartphys.2022.102749
|
| [56] |
GONG Q, GOPALSWAMY N, NEWMARK J. Innovative compact coronagraph approach for balloon-borne investigation of temperature and speed of electrons in the corona (BITSE)[C]//Proceedings of the SPIE 11116, Astronomical Optics: Design, Manufacture, and Test of Space and Ground Systems. San Diego: SPIE, 2019: 111160F
|
| [57] |
MENDILLO C B, HEWAWASAM K, MARTEL J, et al. The PICTURE-C exoplanetary imaging balloon mission: second flight results and the transition to a new mission, PICTURE-D[C]//Proceedings of the SPIE 12680, Techniques and Instrumentation for Detection of Exoplanets. San Diego: SPIE, 2023: 126800F
|
| [58] |
MENDILLO C B, HEWAWASAM K, HOWE G A, et al. Decoupling the image-plane and low-order wavefront sensors for the PICTURE-C coronagraph[C]//Proceedings of the SPIE 11117, Techniques and Instrumentation for Detection of Exoplanets. San Diego: SPIE, 2019: 111171R
|
| [59] |
YOUNG E. NASA’s GHAPS Project: A balloon-borne telescope for planetary science[C]//Egu General Assembly Conference. Vienna: EGU General Assembly, 2017
|
| [60] |
VON EHRENFRIED M D. Stratospheric Balloons: Science and Commerce at the Edge of Space[M]. Cham: Springer, 2021
|
| [61] |
GORHAM P W. Particle astrophysics in NASAʼs long duration balloon program[J]. Nuclear Physics B - Proceedings Supplements, 2013, 234/235/236/237/238/239/240/241/242/243/244: 231-238
|