Volume 44 Issue 6
Dec.  2024
Turn off MathJax
Article Contents
LI Yijian, HUANG Wanning, ZHOU Jianghua, ZHANG Xiaojun, ZHANG Hangyue. Development Status and Prospects of Near Space Observatories (in Chinese). Chinese Journal of Space Science, 2024, 44(6): 1068-1085 doi: 10.11728/cjss2024.06.2023-0145
Citation: LI Yijian, HUANG Wanning, ZHOU Jianghua, ZHANG Xiaojun, ZHANG Hangyue. Development Status and Prospects of Near Space Observatories (in Chinese). Chinese Journal of Space Science, 2024, 44(6): 1068-1085 doi: 10.11728/cjss2024.06.2023-0145

Development Status and Prospects of Near Space Observatories

doi: 10.11728/cjss2024.06.2023-0145 cstr: 32142.14.cjss.2023-0145
  • Received Date: 2023-12-11
  • Rev Recd Date: 2024-03-11
  • Available Online: 2024-05-11
  • Unlike ground-based observatories and space-based observatories, the Near Space Balloon Observatory is a unique type of observatory located in near space, mainly relying on high-altitude scientific balloon platforms. Throughout the last century, countries such as China and the United States have invested significant effort in promoting the development of high-altitude scientific balloon technology, resulting in the establishment of a comprehensive and advanced scientific balloon system, facilitating a wide range of balloon-borne scientific activities, which have facilitated the maturity of near-space observatories. It has the advantages and potential of low distribution and usage costs, short preparation cycles, large payload capacity, recyclability for multiple uses, and more flight opportunities. The development of near space observatories, utilizing high-altitude scientific balloons, has now entered the practical stage. In terms of specific technical research, the focus has shifted from basic application technology to the development of multi-purpose, multifunctional platform structures with high reliability, stability, and precision control. With the ongoing advancements in two key technologies, namely long endurance flight and high-precision pointing, the potential of near-space balloon observatories is being increasingly explored. As early validation platforms for advanced instruments and innovative ideas in space science and astronomy observations, it can effectively enhance the success rate of space-based observatory observation tasks and accelerate the development lifecycle of space-based observatories. As a platform for nurturing space science talents, it can also cultivate more leading experts and strengthen the research team. This article takes the opening of China’s fifth Antarctic Station, the Qinling Station, as an opportunity to suggest timely conducting high-altitude scientific balloon flight tests at the Qinling Station in Antarctica, further promoting the astronomical observation of Antarctica by China’s near space observatory, and contributing greater strength.

     

  • loading
  • [1]
    王海名. 美国国家科学院发布天文学和天体物理学十年调查报告[J]. 空间科学学报, 2022, 42(1): 5-8

    WANG Haiming. The National Academy of Sciences releases its Decadal Survey of Astronomy and Astrophysics[J]. Journal of Space Science, 2022, 42(1): 5-8
    [2]
    冉凡辉. 基于RTS2的天文选址望远镜远程控制系统研究与设计[D]. 昆明: 昆明理工大学, 2015

    RAN Fanhui. Research and Design of Remote Control System for Astronomical Site Selection Telescope Based on RTS2[D]. Kunming: Kunming University of Science and Technology, 2015
    [3]
    刘浩成. 基于多源遥感的冷湖区域天文台选址地理环境适宜度研究[D]. 西宁: 青海大学, 2023

    LIU Haocheng. Study on Geographical Environment Suitability of Observatory Site Selection Based on Multi-source Remote Sensing at Lenghu Region[D]. Xining: Qinghai University, 2023
    [4]
    COSTA J, BOCK A, EMMART C, et al. Interactive visualization of atmospheric effects for celestial bodies[J]. IEEE Transactions on Visualization and Computer Graphics, 2021, 27(2): 785-795 doi: 10.1109/TVCG.2020.3030333
    [5]
    RODIMOVA O B. Carbon dioxide and water vapor continuum absorption in the infrared spectral region[J]. Atmospheric and Oceanic Optics, 2018, 31(6): 564-569 doi: 10.1134/S1024856018060143
    [6]
    ZHANG L H, XIONG R, CHEN J, et al. Optical image compression and encryption transmission-based ondeep learning and ghost imaging[J]. Applied Physics B, 2020, 126(1): 18 doi: 10.1007/s00340-019-7362-1
    [7]
    BAUER S E, IM U, MEZUMAN K, et al. Desert dust, industrialization, and agricultural fires: Health impacts of outdoor air pollution in Africa[J]. Journal of Geophysical Research: Atmospheres, 2019, 124(7): 4104-4120 doi: 10.1029/2018JD029336
    [8]
    顾逸东. 关于空间科学发展的一些思考[J]. 中国科学院院刊, 2022, 37(8): 1031-1049

    GU Yidong. Thoughts on space science development[J]. Bulletin of Chinese Academy of Sciences, 2022, 37(8): 1031-1049
    [9]
    白青江, 范全林, 时蓬, 等. 关于新一代旗舰型科学卫星WFIRST发展的分析[J]. 科技导报, 2021, 39(11): 38-45

    BAI Qingjiang, FAN Quanlin, SHI Peng, et al. On the development of NASA’s next generation flagship scientific mission WFIRST[J]. Science & Technology Review, 2021, 39(11): 38-45
    [10]
    吴季, 王赤, 范全林. 中国科学院空间科学战略性先导科技专项实施11年回顾与展望[J]. 中国科学院院刊, 2022, 37(8): 1019-1030

    WU Ji, WANG Chi, FAN Quanlin. Review on 11 years of implementation of Strategic Priority Program (SPP) on space science and its prospect[J]. Bulletin of Chinese Academy of Sciences, 2022, 37(8): 1019-1030
    [11]
    CHANG J, AMBROSI G, AN Q, et al. The DArk matter particle explorer mission[J]. Astroparticle Physics, 2017, 95: 6-24 doi: 10.1016/j.astropartphys.2017.08.005
    [12]
    ZHANG S N, LI T P, LU F J, et al. Overview to the hard X-ray modulation telescope (Insight-HXMT) satellite[J]. Science China Physics, Mechanics & Astronomy, 2020, 63 (4): 249502
    [13]
    李新乔, 文向阳, 安正华, 等. GECAM卫星有效载荷介绍[J]. 中国科学(物理学 力学 天文学), 2020, 50 (12): 80-96

    LI Xinqiao, WEN Xiangyang, AN Zhenghua, et al. The GECAM and its payload[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2020, 50 (12): 80-96
    [14]
    GAN W Q, FENG L, SU Y. A Chinese solar observatory in space[J]. Nature Astronomy, 2022, 6(1): 165 doi: 10.1038/s41550-021-01593-9
    [15]
    Yuan W, Zhang C, Feng H, et al. Einstein probe — a small mission to monitor and explore the dynami X-ray universe[J]. Journal of Huazhong University of Science & Technology, 2015, 23(4): 383-6
    [16]
    黄宛宁, 张晓军, 李智斌, 等. 临近空间科学技术的发展现状及应用前景[J]. 科技导报, 2019, 37(21): 46-62

    HUANG Wanning, ZHANG Xiaojun, LI Zhibin, et al. Development status and application prospect of near space science and technology[J]. Science & Technology Review, 2019, 37(21): 46-62
    [17]
    SMITH-PIERCE M C, CHAROENBOONVIVAT Y C, SHUKLA D, et al. High altitude aerodynamic reflectors to counter climate change[C]//2018 Applied Aerodynamics Conference. Atlanta: American Institute of Aeronautics, 2018
    [18]
    李智斌, 黄宛宁, 张钊, 等. 2020年临近空间科技热点回眸[J]. 科技导报, 2021, 39(1): 54-68

    LI Zhibin, HUANG Wanning, ZHANG Zhao, et al. Summary of the hot spots of near space science and technology in 2020[J]. Science & Technology Review, 2021, 39(1): 54-68
    [19]
    顾逸东. 气球科学观测100年[J]. 现代物理知识, 2020, 32(2): 3-12

    GU Yidong. 100 years of balloon science observation[J]. Modern Physics Knowledge, 2020, 32(2): 3-12
    [20]
    黄宛宁, 李智斌, 张钊, 等. 2019年临近空间科学技术热点回眸[J]. 科技导报, 2020, 38(1): 38-46

    HUANG Wanning, LI Zhibin, ZHANG Zhao, et al. Summary of hot spots of near space vehicles in 2019[J]. Science & Technology Review, 2020, 38(1): 38-46
    [21]
    李智斌, 黄宛宁, 张钊. 2018年临近空间科学热点回眸[J]. 科技导报, 2019, 37(1): 44-51

    LI Zhibin, HUANG Wanning, ZHANG Zhao. Summary of the hot spots of near space vehicles in 2018[J]. Science & Technology Review, 2019, 37(1): 44-51
    [22]
    MCCARTHY D J. Operating characteristics of the stratoscope II balloon-borne telescope[J]. IEEE Transactions on Aerospace and Electronic Systems, 1969, AES-5(2): 323-329 doi: 10.1109/TAES.1969.309922
    [23]
    SMITH JR I S. Advancements in NASA balloon research and development[J]. Advances in Space Research, 1996, 17(9): 37-44 doi: 10.1016/0273-1177(95)00674-4
    [24]
    陈旭. 长时高空气球的研制发展[J]. 航天器工程, 2007, 16(4): 83-88

    CHEN Xu. Development of long duration high altitude balloon[J]. Spacecraft Engineering, 2007, 16(4): 83-88
    [25]
    祝榕辰, 王生, 姜鲁华. 长航时超压气球技术的发展现状[C]//2014年中国浮空器大会. 哈尔滨: 中国航空学会, 2014

    ZHU Rongchen, WANG Sheng, JIANG Luhua. Development status of long endurance superpressure balloon technology[C]//Chinese Aeronautical Society. Harbin: Chinese Aeronautical Society, 2014
    [26]
    ORR G D. The long duration balloon vehicle (LDBV) flight system development[C]//34th Aerospace Sciences Meeting and Exhibit. Reno: AIAA, 2012
    [27]
    BINNS W R, BOSE R G, BRAUN D L, et al. The SUPERTIGER instrument: measurement of elemental abundances of ultra-heavy galactic cosmic rays[J]. The Astrophysical Journal, 2014, 788(1): 18 doi: 10.1088/0004-637X/788/1/18
    [28]
    RAINWATER E L, SMITH M S. Ultra high altitude balloons for medium-to-large payloads[J]. Advances in Space Research, 2004, 33(10): 1648-1652 doi: 10.1016/j.asr.2003.07.037
    [29]
    LECINSKI A, CARD G, KNÖLKER M, et al. The design and performance of the gondola pointing system for the sunrise II balloon-borne stratospheric solar observatory[J]. Journal of Astronomical Instrumentation, 2017, 6(2): 1740007 doi: 10.1142/S2251171717400074
    [30]
    刘艳霄, 宋腾飞, 张涛, 等. 欧洲球载太阳望远镜SUNRISE及相关研究成果简介[J]. 天文研究与技术, 2021, 18(3): 314-336

    LIU Yanxiao, SONG Tengfei, ZHANG Tao, et al. Overview of balloon-borne solar telescope-SUNRISE[J]. Astronomical Research & Technology, 2021, 18(3): 314-336
    [31]
    SHOJI Y, TAGUCHI M, NAKANO T, et al. FUJIN-2: balloon borne telescope for optical observation of planets[J]. Transactions of the Japan Society for Aeronautical and Space Sciences, Aerospace Technology Japan, 2016, 14(ists30): Pk_95-Pk_102 doi: 10.2322/tastj.14.Pk_95
    [32]
    顾逸东. 从高空气球到载人航天[J]. 现代物理知识, 2023, 35(S1): 192-199

    GU Yidong. From high-altitude balloons to manned spaceflight[J]. Modern Physics Knowledge, 2023, 35(S1): 192-199
    [33]
    李惕碚, 顾逸东. 我国的高空科学气球与高能天文观测[J]. 自然杂志, 1984(3): 163-169, 240

    LI Tibei, GU Yidong. China’s high altitude scientific balloon and high energy astronomical observation[J]. Nature Journal, 1984(3): 163-169, 240
    [34]
    卢方军. 从球载实验到慧眼卫星[J]. 现代物理知识, 2021, 33(2): 4-11

    LU Fangjun. From ball-borne experiments to HXMT[J]. Modern Physics Knowledge, 2021, 33(2): 4-11
    [35]
    CHANG J, ADAMS J H, AHN H S, et al. An excess of cosmic ray electrons at energies of 300-800 GeV[J]. Nature, 2008, 456(7220): 362-365 doi: 10.1038/nature07477
    [36]
    叶祥明. 大型球载望远镜高精度姿态控制及指向技术研究[D]. 北京: 中国科学院北京天文台, 1999

    YE Xiangming. Study on High-accuracy Attitude Control and Pointing Technology of A Large Balloon-borne Solar Telescope[D]. Beijing: National Astronomical Observatories, Chinese Academy of Sciences, 1999
    [37]
    林隽, 宋腾飞, 孙明哲, 等. 50 mm白光球载日冕仪: I. 基本结构与地面观测实验[J]. 中国科学: 物理学 力学 天文学, 2023, 53 (5): 154-180

    LIN Jun, SONG Tengfei, SUN Mingzhe, et al. A 50-mm balloon-borne white-light coronagraph: Ⅰ. Basic structure and experiments on the ground[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2023, 53 (5): 154-180
    [38]
    李一健. 基于多敏感器组合的球载吊舱姿态控制技术研究[D]. 北京: 中国科学院大学, 2023

    LI Yijian. Research on attitude control Technology of Balloon borne Pod Based on Multi-sensor Fusion[D]. Beijing: University of Chinese Academy of Sciences, 2023
    [39]
    王馨悦, 杜丹, 闫召爱, 等. 临近空间飞行平台青藏高原大气NO x原位观测实验[J]. 科学通报, 2022, 67(27): 3348-3356 doi: 10.1360/TB-2021-1279

    WANG Xinyue, DU Dan, YAN Zhao’ai, et al. In situ observation of atmospheric NO x over Qinghai-Tibet Plateau by scientific experiment system in near space program[J]. Chinese Science Bulletin, 2022, 67(27): 3348-3356 doi: 10.1360/TB-2021-1279
    [40]
    LI L, SU J F, CHEN T, et al. Measurement of atmospheric conductivity on the Qinghai-Tibet Plateau in China[J]. Meteorology and Atmospheric Physics, 2022, 134(2): 40 doi: 10.1007/s00703-022-00870-0
    [41]
    祝榕辰, 王生. 超压气球研究与发展现状[C]//第二十四届全国空间探测学术交流会论文摘要集. 西安: 中国空间科学学会, 2011

    ZHU Rongchen, WANG Sheng. Research and development status of superpressure balloons[C]//Summary of Papers at the 24th National Space Exploration Academic Exchange Conference. Xi’an: Chinese Society of Space Sciences, 2011
    [42]
    祝榕辰, 王生, 杨燕初, 等. 南瓜型超压气球球体设计与地面试验[C]//第四届高分辨率对地观测学术年会论文集. 北京: 高分辨率对地观测系统重大专项管理办公室 (中国科学院), 2017

    ZHU Rongchen, WANG Sheng, YANG Yanchu, et al. Design and ground experiments of pumpkin shaped superpressure balloon spheres[C]//Proceedings of the 4th Academic Annual Conference on High Resolution Earth Observation. Beijing: Office for Major Special Management of High Resolution Earth Observation Systems; Chinese Academy of Sciences, 2017
    [43]
    YAJIMA N. A new design and fabrication approach for pressurized balloon[J]. Advances in Space Research, 2000, 26(9): 1357-1360 doi: 10.1016/S0273-1177(00)00060-0
    [44]
    GASKIN J A, SMITH I S, JONES W V. Introduction[J]. Journal of Astronomical Instrumentation, 2014, 3(2): 1403001 doi: 10.1142/S2251171714030019
    [45]
    祝榕辰. 超压气球实现临近空间首飞[J]. 现代物理知识, 2018, 30(1): 1

    ZHU Rongchen. Superpressure balloons achieve their first near space flight[J]. Modern Physics Knowledge, 2018, 30(1): 1
    [46]
    CATHEY JR H M. Evolution of the NASA ultra long duration balloon[C]//AIAA Balloon Systems Conference. Williamsburg: AIAA, 2007
    [47]
    CALLADINE C R. Stability of the “Endeavour” balloon[J]. Studies in Applied Mechanics, 1988, 19: 133-149 doi: 10.1016/B978-0-444-70474-0.50011-2
    [48]
    卜亚楼, 蔡榕, 杨燕初, 等. 南瓜型超压气球展开稳定性研究[J]. 计算机仿真, 2023, 40(5): 56-63

    BU Yalou, CAI Rong, YANG Yanchu, et al. Study on stability of pumpkin shape super pressure balloon deployment[J]. Computer Simulation, 2023, 40(5): 56-63
    [49]
    NAKASHINO K, SAITO Y, AKITA D, et al. Analytical study on the inflated shape of a superpressure balloon covered with a diamond-shaped net[J]. Advances in Space Research, 2023, 71(1): 705-719 doi: 10.1016/j.asr.2022.08.074
    [50]
    DEWEESE K D, WARD P R. Demonstration of a balloon borne arc-second pointer design[C]//36th COSPAR Scientific Assembly. Beijing: CNCOSPAR, 2006
    [51]
    HANAGUD A, SIMPSON J, LANZI R, et al. A solar pointing system for the Long Duration Balloon missions[C]//International Balloon Technology Conference. San Francisco: AIAA, 2012
    [52]
    STUCHLIK D W. The wallops arc second pointer-a balloon borne fine pointing system[C]//AIAA Balloon Systems Conference. Dallas: AIAA, 2015
    [53]
    STUCHLIK D W, LANZI R. The NASA wallops arc-second pointer (WASP) system for precision pointing of scientific balloon instruments and telescopes[C]//AIAA Balloon Systems Conference. Denver: AIAA, 2017
    [54]
    ABARR Q, AWAKI H, BARING M G, et al. XL-Calibur-a second-generation balloon-borne hard X-ray polarimetry mission[J]. Astroparticle Physics, 2021, 126 : 102529
    [55]
    ABARR Q, BEHESHTIPOUR B, BEILICKE M, et al. Performance of the X-Calibur hard X-ray polarimetry mission during its 2018/19 long-duration balloon flight[J]. Astroparticle Physics, 2022, 143: 102749 doi: 10.1016/j.astropartphys.2022.102749
    [56]
    GONG Q, GOPALSWAMY N, NEWMARK J. Innovative compact coronagraph approach for balloon-borne investigation of temperature and speed of electrons in the corona (BITSE)[C]//Proceedings of the SPIE 11116, Astronomical Optics: Design, Manufacture, and Test of Space and Ground Systems. San Diego: SPIE, 2019: 111160F
    [57]
    MENDILLO C B, HEWAWASAM K, MARTEL J, et al. The PICTURE-C exoplanetary imaging balloon mission: second flight results and the transition to a new mission, PICTURE-D[C]//Proceedings of the SPIE 12680, Techniques and Instrumentation for Detection of Exoplanets. San Diego: SPIE, 2023: 126800F
    [58]
    MENDILLO C B, HEWAWASAM K, HOWE G A, et al. Decoupling the image-plane and low-order wavefront sensors for the PICTURE-C coronagraph[C]//Proceedings of the SPIE 11117, Techniques and Instrumentation for Detection of Exoplanets. San Diego: SPIE, 2019: 111171R
    [59]
    YOUNG E. NASA’s GHAPS Project: A balloon-borne telescope for planetary science[C]//Egu General Assembly Conference. Vienna: EGU General Assembly, 2017
    [60]
    VON EHRENFRIED M D. Stratospheric Balloons: Science and Commerce at the Edge of Space[M]. Cham: Springer, 2021
    [61]
    GORHAM P W. Particle astrophysics in NASAʼs long duration balloon program[J]. Nuclear Physics B - Proceedings Supplements, 2013, 234/235/236/237/238/239/240/241/242/243/244: 231-238
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(27)  / Tables(3)

    Article Metrics

    Article Views(892) PDF Downloads(52) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return