Volume 44 Issue 6
Dec.  2024
Turn off MathJax
Article Contents
OUYANG Wanxin, YANG Zhongwei, GUO Xiaocheng, LI Hui, LU Quanming, WANG Chi. Magnetosheath Jet-driven Bow Waves and Their Soft X-ray Imaging: Hybrid and PIC Simulations (in Chinese). Chinese Journal of Space Science, 2024, 44(6): 979-987 doi: 10.11728/cjss2024.06.2024-yg28
Citation: OUYANG Wanxin, YANG Zhongwei, GUO Xiaocheng, LI Hui, LU Quanming, WANG Chi. Magnetosheath Jet-driven Bow Waves and Their Soft X-ray Imaging: Hybrid and PIC Simulations (in Chinese). Chinese Journal of Space Science, 2024, 44(6): 979-987 doi: 10.11728/cjss2024.06.2024-yg28

Magnetosheath Jet-driven Bow Waves and Their Soft X-ray Imaging: Hybrid and PIC Simulations

doi: 10.11728/cjss2024.06.2024-yg28 cstr: 32142.14.cjss.2024-yg28
  • Received Date: 2024-10-12
  • Rev Recd Date: 2024-10-29
  • Available Online: 2024-11-13
  • Recent statistics by MMS indicate that magnetosheath High-Speed Jets (HSJs) are typically observed downstream from the quasi-parallel bow shock. A fraction of them can drive magneto sheath bow waves. This paper primarily utilizes two-dimensional hybrid simulations to explore the characteristics of these HSJs and Bow Waves (BWs) under various parameters, including different shock normal angles (θBn) (which is the angle between the shock normal direction and the background magnetic field B0), and whether B0 falls within or outside the simulation plane. By comparing the results of Particle-in-Cell (PIC) simulations with hybrid simulations under similar setups, it is evident that PIC simulations not only reproduce the results of hybrid simulations but also reveal a richer multiscale magnetic island structure in HSJ and bow wave regions. These magnetic islands range in size from less than 1 ion inertial length (di0) to more than 10 di0. Based on simulation data and hydrogen exosphere model, a quantitative assessment has been conducted of the soft X-ray emission intensity in the region from the bow shock to the magnetopause, specifically targeting the China-Europe SMILE space science satellite mission scheduled for launch in September 2025.

     

  • loading
  • [1]
    BLANDFORD R, EICHLER D. Particle acceleration at astrophysical shocks: a theory of cosmic ray origin[J]. Physics Reports, 1987, 154(1): 1-75 doi: 10.1016/0370-1573(87)90134-7
    [2]
    RICHARDSON J D, KASPER J C, WANG C, et al. Cool heliosheath plasma and deceleration of the upstream solar wind at the termination shock[J]. Nature, 2008, 454(7200): 63-66 doi: 10.1038/nature07024
    [3]
    JOHLANDER A, SCHWARTZ S J, VAIVADS A, et al. Rippled quasiperpendicular shock observed by the magnetospheric multiscale spacecraft[J]. Physical Review Letters, 2016, 117(16): 165101 doi: 10.1103/PhysRevLett.117.165101
    [4]
    YANG Z W, LIU Y D, JOHLANDER A, et al. MMS direct observations of kinetic-scale shock self-reformation[J]. The Astrophysical Journal Letters, 2020, 901(1): L6 doi: 10.3847/2041-8213/abb3ff
    [5]
    BURCH J L, TORBERT R B, PHAN T D, et al. Electron-scale measurements of magnetic reconnection in space[J]. Science, 2016, 352(6290): aaf2939 doi: 10.1126/science.aaf2939
    [6]
    GUO X C, WANG C, HU Y Q. Global MHD simulation of the Kelvin‐Helmholtz instability at the magnetopause for northward interplanetary magnetic field[J]. Journal of Geophysical Research: Space Physics, 2010, 115(A10): A10218. doi: 10.1029/2009JA015193
    [7]
    PLASCHKE F, HIETALA H, VÖRÖS Z. Scale sizes of magnetosheath jets[J]. Journal of Geophysical Research: Space Physics, 2020, 125(9): e2020JA027962 doi: 10.1029/2020JA027962
    [8]
    CHEN L J, NG J, OMELCHENKO Y, et al. Magnetopause reconnection and indents induced by foreshock turbulence[J]. Geophysical Research Letters, 2021, 48(11): e2021GL093029 doi: 10.1029/2021GL093029
    [9]
    GUO W L, TANG B B, ZHANG Q H, et al. The magnetopause deformation indicated by fast cold ion motion[J]. Journal of Geophysical Research: Space Physics, 2024, 129(2): e2023JA032121 doi: 10.1029/2023JA032121
    [10]
    HIETALA H, PHAN T D, ANGELOPOULOS V, et al. In situ observations of a magnetosheath high-speed jet triggering magnetopause reconnection[J]. Geophysical Research Letters, 2018, 45(4): 1732-1740 doi: 10.1002/2017GL076525
    [11]
    YANG Z W, JARVINEN R, GUO X C, et al. Deformations at Earth’s dayside magnetopause during quasi-radial IMF conditions: global kinetic simulations and Soft X-ray Imaging[J]. Earth and planetary Physics, 2024, 8(1): 59-69 doi: 10.26464/epp2023059
    [12]
    BURGESS D, LUCEK E A, SCHOLER M, et al. Quasi-parallel shock structure and processes[J]. Space Science Reviews, 2005, 118(1/2/3/4): 205-222 doi: 10.1007/s11214-005-3832-3
    [13]
    LEMBEGE B, GIACALONE J, SCHOLER, M, et al. Selected problems in collisionless-shock physics[J]. Space Science Reviews, 2004, 110(3): 161-226. DOI: 1023/B:SPAC.0000023372.12232.b7
    [14]
    LIU T Z, HAO Y F, WILSON III L B, et al. Magnetospheric multiscale observations of Earth’s oblique bow shock reformation by foreshock ultralow-frequency waves[J]. Geophysical Research Letters, 2021, 48(2): e2020GL091184 doi: 10.1029/2020GL091184
    [15]
    HIETALA H, LAITINEN T V, ANDRÉEOVÁ K, et al. Supermagnetosonic jets behind a collisionless quasiparallel shock[J]. Physical Review Letters, 2009, 103(24): 245001 doi: 10.1103/PhysRevLett.103.245001
    [16]
    PLASCHKE F, HIETALA H, ARCHER M, et al. Jets downstream of collisionless shocks[J]. Space Science Reviews, 2018, 214(5): 81 doi: 10.1007/s11214-018-0516-3
    [17]
    LIU T Z, HIETALA H, ANGELOPOULOS V, et al. THEMIS observations of particle acceleration by a magnetosheath jet-driven bow wave[J]. Geophysical Research Letters, 2019, 46(14): 7929-7936 doi: 10.1029/2019GL082614
    [18]
    LIU T Z, HIETALA H, ANGELOPOULOS V, et al. Electron acceleration by magnetosheath jet-driven bow waves[J]. Journal of Geophysical Research: Space Physics, 2020, 125(7): e2019JA027709 doi: 10.1029/2019JA027709
    [19]
    LIU T Z, HIETALA H, ANGELOPOULOS V, et al. Statistical study of magnetosheath jet-driven bow waves[J]. Journal of Geophysical Research: Space Physics, 2020, 125(7): e2019JA027710 doi: 10.1029/2019JA027710
    [20]
    WINSKE D, QUEST K B. Magnetic field and density fluctuations at perpendicular supercritical collisionless shocks[J]. Journal of Geophysical Research: Space Physics, 1988, 93(A9): 9681-9693 doi: 10.1029/JA093iA09p09681
    [21]
    GUO F, GIACALONE J. The acceleration of thermal protons at parallel collisionless shocks: three-dimensional hybrid simulations[J]. The Astrophysical Journal, 2013, 773(2): 158 doi: 10.1088/0004-637X/773/2/158
    [22]
    BURGESS D, WILKINSON W P, SCHWARTZ S J. Ion distributions and thermalization at perpendicular and quasi-perpendicular supercritical collisionless shocks[J]. Journal of Geophysical Research: Space Physics, 1989, 94(A7): 8783-8792 doi: 10.1029/JA094iA07p08783
    [23]
    YANG Z W, LU Q M, LIU Y D, et al. Impact of shock front rippling and self-reformation on the electron dynamics at low-Mach-number shocks[J]. The Astrophysical Journal, 2018, 857(1): 36 doi: 10.3847/1538-4357/aab714
    [24]
    SAVOINI P, LEMBEGE B. Electron dynamics in two- and one-dimensional oblique supercritical collisionless magnetosonic shocks[J]. Journal of Geophysical Research: Space Physics, 1994, 99(A4): 6609-6635 doi: 10.1029/93JA03330
    [25]
    YANG Z W, LEMBÈGE B, LU Q M. Impact of the rippling of a perpendicular shock front on ion dynamics[J]. Journal of Geophysical Research: Space Physics, 2012, 117(A7): A07222 doi: 10.1029/2011JA017211
    [26]
    ARBER T D, BENNETT K, BRADY C S, et al. Contemporary particle-in-cell approach to laser-plasma modelling[J]. Plasma Physics and Controlled Fusion, 2015, 57(11): 113001 doi: 10.1088/0741-3335/57/11/113001
    [27]
    YANG Z W, LIU Y D, MATSUKIYO S, et al. PIC simulations of microinstabilities and waves at near-sun solar wind perpendicular shocks: predictions for parker solar probe and solar orbiter[J]. The Astrophysical Journal Letters, 2020, 900(2): L24 doi: 10.3847/2041-8213/abaf59
    [28]
    SUN T R, WANG C, SEMBAY S F, et al. Soft X-ray imaging of the magnetosheath and cusps under different solar wind conditions: MHD simulations[J]. Journal of Geophysical Research: Space Physics, 2019, 124(4): 2435-2450 doi: 10.1029/2018JA026093
    [29]
    CONNOR H K, SIBECK D G, COLLIER M R, et al. Soft X-ray and ENA imaging of the Earth’s dayside magnetosphere[J]. Journal of Geophysical Research: Space Physics, 2021, 126(3): e2020JA028816 doi: 10.1029/2020JA028816
    [30]
    HAO Y F, GAO X L, LU Q M, et al. Reformation of rippled quasi-parallel shocks: 2D hybrid simulations[J]. Journal of Geophysical Research: Space Physics, 2017, 122(6): 6385-6396 doi: 10.1002/2017JA024234
    [31]
    REN J Y, LU Q M, GUO J, et al. Two-dimensional hybrid simulations of high-speed jets downstream of quasi-parallel shocks[J]. Journal of Geophysical Research: Space Physics, 2023, 128(8): e2023JA031699 doi: 10.1029/2023JA031699
    [32]
    REN J Y, GUO J, LU Q M, et al. Honeycomb-like magnetosheath structure formed by jets: three-dimensional global hybrid simulations[J]. Geophysical Research Letters, 2024, 51(12): e2024GL109925 doi: 10.1029/2024GL109925
    [33]
    GUO A, LU Q M, LU S, et al. Properties of electron-scale magnetic reconnection at a quasi-perpendicular shock[J]. The Astrophysical Journal, 2023, 955(1): 14 doi: 10.3847/1538-4357/acec48
    [34]
    GUNELL H, HAMRIN M, NESBIT-ÖSTMAN S, et al. Magnetosheath jets at Mars[J]. Science Advances, 2023, 9(22): eadg5703 doi: 10.1126/sciadv.adg5703
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article Views(224) PDF Downloads(52) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return