Citation: | OUYANG Wanxin, YANG Zhongwei, GUO Xiaocheng, LI Hui, LU Quanming, WANG Chi. Magnetosheath Jet-driven Bow Waves and Their Soft X-ray Imaging: Hybrid and PIC Simulations (in Chinese). Chinese Journal of Space Science, 2024, 44(6): 979-987 doi: 10.11728/cjss2024.06.2024-yg28 |
[1] |
BLANDFORD R, EICHLER D. Particle acceleration at astrophysical shocks: a theory of cosmic ray origin[J]. Physics Reports, 1987, 154(1): 1-75 doi: 10.1016/0370-1573(87)90134-7
|
[2] |
RICHARDSON J D, KASPER J C, WANG C, et al. Cool heliosheath plasma and deceleration of the upstream solar wind at the termination shock[J]. Nature, 2008, 454(7200): 63-66 doi: 10.1038/nature07024
|
[3] |
JOHLANDER A, SCHWARTZ S J, VAIVADS A, et al. Rippled quasiperpendicular shock observed by the magnetospheric multiscale spacecraft[J]. Physical Review Letters, 2016, 117(16): 165101 doi: 10.1103/PhysRevLett.117.165101
|
[4] |
YANG Z W, LIU Y D, JOHLANDER A, et al. MMS direct observations of kinetic-scale shock self-reformation[J]. The Astrophysical Journal Letters, 2020, 901(1): L6 doi: 10.3847/2041-8213/abb3ff
|
[5] |
BURCH J L, TORBERT R B, PHAN T D, et al. Electron-scale measurements of magnetic reconnection in space[J]. Science, 2016, 352(6290): aaf2939 doi: 10.1126/science.aaf2939
|
[6] |
GUO X C, WANG C, HU Y Q. Global MHD simulation of the Kelvin‐Helmholtz instability at the magnetopause for northward interplanetary magnetic field[J]. Journal of Geophysical Research: Space Physics, 2010, 115(A10): A10218. doi: 10.1029/2009JA015193
|
[7] |
PLASCHKE F, HIETALA H, VÖRÖS Z. Scale sizes of magnetosheath jets[J]. Journal of Geophysical Research: Space Physics, 2020, 125(9): e2020JA027962 doi: 10.1029/2020JA027962
|
[8] |
CHEN L J, NG J, OMELCHENKO Y, et al. Magnetopause reconnection and indents induced by foreshock turbulence[J]. Geophysical Research Letters, 2021, 48(11): e2021GL093029 doi: 10.1029/2021GL093029
|
[9] |
GUO W L, TANG B B, ZHANG Q H, et al. The magnetopause deformation indicated by fast cold ion motion[J]. Journal of Geophysical Research: Space Physics, 2024, 129(2): e2023JA032121 doi: 10.1029/2023JA032121
|
[10] |
HIETALA H, PHAN T D, ANGELOPOULOS V, et al. In situ observations of a magnetosheath high-speed jet triggering magnetopause reconnection[J]. Geophysical Research Letters, 2018, 45(4): 1732-1740 doi: 10.1002/2017GL076525
|
[11] |
YANG Z W, JARVINEN R, GUO X C, et al. Deformations at Earth’s dayside magnetopause during quasi-radial IMF conditions: global kinetic simulations and Soft X-ray Imaging[J]. Earth and planetary Physics, 2024, 8(1): 59-69 doi: 10.26464/epp2023059
|
[12] |
BURGESS D, LUCEK E A, SCHOLER M, et al. Quasi-parallel shock structure and processes[J]. Space Science Reviews, 2005, 118(1/2/3/4): 205-222 doi: 10.1007/s11214-005-3832-3
|
[13] |
LEMBEGE B, GIACALONE J, SCHOLER, M, et al. Selected problems in collisionless-shock physics[J]. Space Science Reviews, 2004, 110(3): 161-226. DOI: 1023/B:SPAC.0000023372.12232.b7
|
[14] |
LIU T Z, HAO Y F, WILSON III L B, et al. Magnetospheric multiscale observations of Earth’s oblique bow shock reformation by foreshock ultralow-frequency waves[J]. Geophysical Research Letters, 2021, 48(2): e2020GL091184 doi: 10.1029/2020GL091184
|
[15] |
HIETALA H, LAITINEN T V, ANDRÉEOVÁ K, et al. Supermagnetosonic jets behind a collisionless quasiparallel shock[J]. Physical Review Letters, 2009, 103(24): 245001 doi: 10.1103/PhysRevLett.103.245001
|
[16] |
PLASCHKE F, HIETALA H, ARCHER M, et al. Jets downstream of collisionless shocks[J]. Space Science Reviews, 2018, 214(5): 81 doi: 10.1007/s11214-018-0516-3
|
[17] |
LIU T Z, HIETALA H, ANGELOPOULOS V, et al. THEMIS observations of particle acceleration by a magnetosheath jet-driven bow wave[J]. Geophysical Research Letters, 2019, 46(14): 7929-7936 doi: 10.1029/2019GL082614
|
[18] |
LIU T Z, HIETALA H, ANGELOPOULOS V, et al. Electron acceleration by magnetosheath jet-driven bow waves[J]. Journal of Geophysical Research: Space Physics, 2020, 125(7): e2019JA027709 doi: 10.1029/2019JA027709
|
[19] |
LIU T Z, HIETALA H, ANGELOPOULOS V, et al. Statistical study of magnetosheath jet-driven bow waves[J]. Journal of Geophysical Research: Space Physics, 2020, 125(7): e2019JA027710 doi: 10.1029/2019JA027710
|
[20] |
WINSKE D, QUEST K B. Magnetic field and density fluctuations at perpendicular supercritical collisionless shocks[J]. Journal of Geophysical Research: Space Physics, 1988, 93(A9): 9681-9693 doi: 10.1029/JA093iA09p09681
|
[21] |
GUO F, GIACALONE J. The acceleration of thermal protons at parallel collisionless shocks: three-dimensional hybrid simulations[J]. The Astrophysical Journal, 2013, 773(2): 158 doi: 10.1088/0004-637X/773/2/158
|
[22] |
BURGESS D, WILKINSON W P, SCHWARTZ S J. Ion distributions and thermalization at perpendicular and quasi-perpendicular supercritical collisionless shocks[J]. Journal of Geophysical Research: Space Physics, 1989, 94(A7): 8783-8792 doi: 10.1029/JA094iA07p08783
|
[23] |
YANG Z W, LU Q M, LIU Y D, et al. Impact of shock front rippling and self-reformation on the electron dynamics at low-Mach-number shocks[J]. The Astrophysical Journal, 2018, 857(1): 36 doi: 10.3847/1538-4357/aab714
|
[24] |
SAVOINI P, LEMBEGE B. Electron dynamics in two- and one-dimensional oblique supercritical collisionless magnetosonic shocks[J]. Journal of Geophysical Research: Space Physics, 1994, 99(A4): 6609-6635 doi: 10.1029/93JA03330
|
[25] |
YANG Z W, LEMBÈGE B, LU Q M. Impact of the rippling of a perpendicular shock front on ion dynamics[J]. Journal of Geophysical Research: Space Physics, 2012, 117(A7): A07222 doi: 10.1029/2011JA017211
|
[26] |
ARBER T D, BENNETT K, BRADY C S, et al. Contemporary particle-in-cell approach to laser-plasma modelling[J]. Plasma Physics and Controlled Fusion, 2015, 57(11): 113001 doi: 10.1088/0741-3335/57/11/113001
|
[27] |
YANG Z W, LIU Y D, MATSUKIYO S, et al. PIC simulations of microinstabilities and waves at near-sun solar wind perpendicular shocks: predictions for parker solar probe and solar orbiter[J]. The Astrophysical Journal Letters, 2020, 900(2): L24 doi: 10.3847/2041-8213/abaf59
|
[28] |
SUN T R, WANG C, SEMBAY S F, et al. Soft X-ray imaging of the magnetosheath and cusps under different solar wind conditions: MHD simulations[J]. Journal of Geophysical Research: Space Physics, 2019, 124(4): 2435-2450 doi: 10.1029/2018JA026093
|
[29] |
CONNOR H K, SIBECK D G, COLLIER M R, et al. Soft X-ray and ENA imaging of the Earth’s dayside magnetosphere[J]. Journal of Geophysical Research: Space Physics, 2021, 126(3): e2020JA028816 doi: 10.1029/2020JA028816
|
[30] |
HAO Y F, GAO X L, LU Q M, et al. Reformation of rippled quasi-parallel shocks: 2D hybrid simulations[J]. Journal of Geophysical Research: Space Physics, 2017, 122(6): 6385-6396 doi: 10.1002/2017JA024234
|
[31] |
REN J Y, LU Q M, GUO J, et al. Two-dimensional hybrid simulations of high-speed jets downstream of quasi-parallel shocks[J]. Journal of Geophysical Research: Space Physics, 2023, 128(8): e2023JA031699 doi: 10.1029/2023JA031699
|
[32] |
REN J Y, GUO J, LU Q M, et al. Honeycomb-like magnetosheath structure formed by jets: three-dimensional global hybrid simulations[J]. Geophysical Research Letters, 2024, 51(12): e2024GL109925 doi: 10.1029/2024GL109925
|
[33] |
GUO A, LU Q M, LU S, et al. Properties of electron-scale magnetic reconnection at a quasi-perpendicular shock[J]. The Astrophysical Journal, 2023, 955(1): 14 doi: 10.3847/1538-4357/acec48
|
[34] |
GUNELL H, HAMRIN M, NESBIT-ÖSTMAN S, et al. Magnetosheath jets at Mars[J]. Science Advances, 2023, 9(22): eadg5703 doi: 10.1126/sciadv.adg5703
|