| Citation: | HU Shihang, LU Quanming, GUAN Yundan, LU San. Particle-in-cell Simulation of Electromagnetic Field Structure in the Electron-only Reconnection (in Chinese). Chinese Journal of Space Science, 2024, 44(6): 970-978 doi: 10.11728/cjss2024.06.2024-yg31 |
| [1] |
VASYLIUNAS V M. Theoretical models of magnetic field line merging[J]. Reviews of Geophysics, 1975, 13(1): 303-336 doi: 10.1029/RG013i001p00303
|
| [2] |
BISKAMP D. Magnetic Reconnection in Plasmas[M]. Cambridge: Cambridge University Press, 2000. DOI: 10.1017/CBO9780511599958
|
| [3] |
YAMADA M, KULSRUD R, JI H T. Magnetic reconnection[J]. Reviews of Modern Physics, 2010, 82(1): 603-664. doi: 10.1103/RevModPhys.82.603
|
| [4] |
王水, 陆全明. 无碰撞磁场重联[M]. 北京: 科学出版社, 2019
WANG Shui, LU Quanming. Collisionless Magnetic Reconnection[M]. Beijing: Science Press, 2019
|
| [5] |
MASUDA S, KOSUGI T, HARA H, et al. A loop-top hard X-ray source in a compact solar flare as evidence for magnetic reconnection[J]. Nature, 1994, 371(6497): 495-497 doi: 10.1038/371495a0
|
| [6] |
KRUCKER S, HUDSON H S, GLESENER L, et al. Measurements of the coronal acceleration region of a solar flare[J]. The Astrophysical Journal, 2010, 714(2): 1108-1119 doi: 10.1088/0004-637X/714/2/1108
|
| [7] |
CASSAK P A, SHAY M A. Magnetic reconnection for coronal conditions: reconnection rates, secondary islands and onset[J]. Space Science Reviews, 2012, 172(1): 283-302 doi: 10.1007/s11214-011-9755-2
|
| [8] |
SANG L L, LU Q M, XIE J L, et al. Experimental studies on the propagation of whistler-mode waves in a magnetized plasma structure with a non-uniform density[J]. Plasma Science and Technology, 2023, 25(9): 095301 doi: 10.1088/2058-6272/acc502
|
| [9] |
GOSLING J T, SKOUG R M, MCCOMAS D J, et al. Direct evidence for magnetic reconnection in the solar wind near 1 AU[J]. Journal of Geophysical Research: Space Physics, 2005, 110(A1): A01107 doi: 10.1029/2004JA010809
|
| [10] |
WANG R S, WANG S M, LU Q M, et al. Direct observation of turbulent magnetic reconnection in the solar wind[J]. Nature Astronomy, 2023, 7(1): 18-28 doi: 10.1038/s41550-022-01818-5
|
| [11] |
WANG R S, YU X C, WANG Y M, et al. Observation of the hall magnetic reconnection as close as 56 solar Radii from the sun[J]. The Astrophysical Journal, 2023, 947(2): 78 doi: 10.3847/1538-4357/acbdf6
|
| [12] |
ØIEROSET M, PHAN T D, FUJIMOTO M, et al. In situ detection of collisionless reconnection in the Earth’s magnetotail[J]. Nature, 2001, 412 (6845): 414-417. DOI: 10.1038/35086520
|
| [13] |
WANG R S, LU Q M, DU A M, et al. In situ observations of a secondary magnetic island in an ion diffusion region and associated energetic electrons[J]. Physical Review Letters, 2010, 104 (17): 175003. DOI: 10.1103/PhysRevLett.104.175003
|
| [14] |
ZHANG T L, LU Q M, BAUMJOHANN W, et al. Magnetic reconnection in the near Venusian magnetotail[J]. Science, 2012, 336(6081): 567-570 doi: 10.1126/science.1217013
|
| [15] |
LU Q M, FU H S, WANG R S, et al. Collisionless magnetic reconnection in the magnetosphere[J]. Chinese Physics B, 2022, 31(8): 089401 doi: 10.1088/1674-1056/ac76ab
|
| [16] |
WANG R S, CHENG Z H, SLAVIN J A, et al. Direct detection of ongoing magnetic reconnection at mercury’s high-latitude magnetopause[J]. Geophysical Research Letters, 2024, 51(5): e2023GL106282 doi: 10.1029/2023GL106282
|
| [17] |
YAMADA M, REN Y, JI H T, et al. Experimental study of two-fluid effects on magnetic reconnection in a laboratory plasma with variable collisionality[J]. Physics of Plasmas, 2006, 13(5): 052119 doi: 10.1063/1.2203950
|
| [18] |
EGEDAL J, FOX W, KATZ N, et al. Laboratory observations of spontaneous magnetic reconnection[J]. Physical Review Letters, 2007, 98(1): 015003 doi: 10.1103/PhysRevLett.98.015003
|
| [19] |
LI C K, SÉGUIN F H, FRENJE J A, et al. Observation of megagauss-field topology changes due to magnetic reconnection in laser-produced plasmas[J]. Physical Review Letters, 2007, 99(5): 055001 doi: 10.1103/PhysRevLett.99.055001
|
| [20] |
DONG Q L, WANG S J, LU Q M, et al. Plasmoid ejection and secondary current sheet generation from magnetic reconnection in laser-plasma interaction[J]. Physical Review Letters, 2012, 108(21): 215001 doi: 10.1103/PhysRevLett.108.215001
|
| [21] |
YAMADA M, YOO J, JARA-ALMONTE J, et al. Study of energy conversion and partitioning in the magnetic reconnection layer of a laboratory plasma[J]. Physics of Plasmas, 2015, 22(5): 056501 doi: 10.1063/1.4920960
|
| [22] |
SANG L L, LU Q M, XIE J L, et al. Energy dissipation during magnetic reconnection in the Keda linear magnetized plasma device[J]. Physics of Plasmas, 2022, 29(10): 102108 doi: 10.1063/5.0090790
|
| [23] |
MA Z W, BHATTACHARJEE A. Hall magnetohydrodynamic reconnection: the geospace environment modeling challenge[J]. Journal of Geophysical Research: Space Physics, 2001, 106(A3): 3773-3782 doi: 10.1029/1999JA001004
|
| [24] |
PRITCHETT P L. Geospace Environment Modeling magnetic reconnection challenge: simulations with a full particle electromagnetic code[J]. Journal of Geophysical Research: Space Physics, 2001, 106(A3): 3783-3798 doi: 10.1029/1999JA001006
|
| [25] |
HUANG C, WANG R S, LU Q M, et al. Electron density hole and quadruple structure of B y during collisionless magnetic reconnection[J]. Chinese Science Bulletin, 2010, 55(8): 718-722 doi: 10.1007/s11434-009-0538-z
|
| [26] |
LU Q M, HUANG C, XIE J L, et al. Features of separatrix regions in magnetic reconnection: Comparison of 2-D particle-in-cell simulations and Cluster observations[J]. Journal of Geophysical Research: Space Physics, 2010, 115(A11): A11208 doi: 10.1029/2010JA015713
|
| [27] |
ZHOU M, DENG X H, ZHONG Z H, et al. Observations of an electron diffusion region in symmetric reconnection with weak guide field[J]. The Astrophysical Journal, 2019, 870(1): 34 doi: 10.3847/1538-4357/aaf16f
|
| [28] |
KUZNETSOVA M M, HESSE M, WINSKE D. Kinetic quasi-viscous and bulk flow inertia effects in collisionless magnetotail reconnection[J]. Journal of Geophysical Research: Space Physics, 1998, 103(A1): 199-213 doi: 10.1029/97JA02699
|
| [29] |
HESSE M, SCHINDLER K, BIRN J, et al. The diffusion region in collisionless magnetic reconnection[J]. Physics of Plasmas, 1999, 6(5): 1781-1795 doi: 10.1063/1.873436
|
| [30] |
EGEDAL J, GURRAM H, GREESS S, et al. The force balance of electrons during kinetic anti-parallel magnetic reconnection[J]. Physics of Plasmas, 2023, 30(6): 062106 doi: 10.1063/5.0130417
|
| [31] |
BIRN J, DRAKE J F, SHAY M A, et al. Geospace Environmental Modeling (GEM) magnetic reconnection challenge[J]. Journal of Geophysical Research: Space Physics, 2001, 106(A3): 3715-3719 doi: 10.1029/1999JA900449
|
| [32] |
LU Q M, WANG R S, XIE J L, et al. Electron dynamics in collisionless magnetic reconnection[J]. Chinese Science Bulletin, 2011, 56(12): 1174-1181 doi: 10.1007/s11434-011-4440-0
|
| [33] |
LU S, LU Q M, CAO Y, et al. The effects of the guide field on the structures of electron density depletions in collisionless magnetic reconnection[J]. Chinese Science Bulletin, 2011, 56(1): 48-52 doi: 10.1007/s11434-010-4250-9
|
| [34] |
(傅向荣, 郭俊, 王水. 存在初始引导场情况下的无碰撞磁场重联[J]. 空间科学学报, 2006, 26(6): 432-439 doi: 10.11728/cjss2006.06.432
FU Xiangrong, GUO Jun, WANG Shui. Collisionless magnetic reconnection in presence of a guide field[J]. Chinese Journal of Space Science, 2006, 26(6): 432-439 doi: 10.11728/cjss2006.06.432
|
| [35] |
FU X R, LU Q M, WANG S. The process of electron acceleration during collisionless magnetic reconnection[J]. Physics of Plasmas, 2006, 13(1): 012309 doi: 10.1063/1.2164808
|
| [36] |
LU S, ANGELOPOULOS V, PRITCHETT P L, et al. Electrodynamic contributions to the hall- and parallel electric fields in collisionless magnetic reconnection[J]. Journal of Geophysical Research: Space Physics, 2021, 126(11): e2021JA029550 doi: 10.1029/2021JA029550
|
| [37] |
LU S, WANG R S, LU Q M, et al. Magnetotail reconnection onset caused by electron kinetics with a strong external driver[J]. Nature Communications, 2020, 11(1): 5049 doi: 10.1038/s41467-020-18787-w
|
| [38] |
HUBBERT M, QI Y, RUSSELL C T, et al. Electron-only tail current sheets and their temporal evolution[J]. Geophysical Research Letters, 2021, 48(5): e2020GL091364 doi: 10.1029/2020GL091364
|
| [39] |
HUBBERT M, RUSSELL C T, QI Y, et al. Electron-only reconnection as a transition phase from quiet magnetotail current sheets to traditional magnetotail reconnection[J]. Journal of Geophysical Research: Space Physics, 2022, 127(3): e2021JA029584 doi: 10.1029/2021JA029584
|
| [40] |
LU S, LU Q M, WANG R S, et al. Electron-only reconnection as a transition from quiet current sheet to standard reconnection in earth’s magnetotail: particle-in-cell simulation and application to MMS data[J]. Geophysical Research Letters, 2022, 49(11): e2022GL098547 doi: 10.1029/2022GL098547
|
| [41] |
WANG R S, LU Q M, NAKAMURA R, et al. An electron-scale current sheet without bursty reconnection signatures observed in the near-earth tail[J]. Geophysical Research Letters, 2018, 45(10): 4542-4549 doi: 10.1002/2017GL076330
|
| [42] |
WANG R S, LU Q M, LU S, et al. Physical implication of two types of reconnection electron diffusion regions with and without ion-coupling in the magnetotail current sheet[J]. Geophysical Research Letters, 2020, 47(21): e2020GL088761 doi: 10.1029/2020GL088761
|
| [43] |
MAN H Y, ZHOU M, YI Y Y, et al. Observations of electron-only magnetic reconnection associated with macroscopic magnetic flux ropes[J]. Geophysical Research Letters, 2020, 47(19): e2020GL089659 doi: 10.1029/2020GL089659
|
| [44] |
PHAN T D, EASTWOOD J P, SHAY M A, et al. Electron magnetic reconnection without ion coupling in Earth’s turbulent magnetosheath[J]. Nature, 2018, 557(7704): 202-206 doi: 10.1038/s41586-018-0091-5
|
| [45] |
STAWARZ J E, EASTWOOD J P, PHAN T D, et al. Properties of the turbulence associated with electron-only magnetic reconnection in earth’s magnetosheath[J]. The Astrophysical Journal Letters, 2019, 877(2): L37 doi: 10.3847/2041-8213/ab21c8
|
| [46] |
SHI P Y, SRIVASTAV P, BARBHUIYA M H, et al. Electron-only reconnection and associated electron heating and acceleration in PHASMA[J]. Physics of Plasmas, 2022, 29(3): 032101 doi: 10.1063/5.0082633
|
| [47] |
SHI P Y, SRIVASTAV P, BARBHUIYA M H, et al. Laboratory observations of electron heating and Non-Maxwellian distributions at the kinetic scale during electron-only magnetic reconnection[J]. Physical Review Letters, 2022, 128(2): 025002 doi: 10.1103/PhysRevLett.128.025002
|
| [48] |
PYAKUREL P S, SHAY M A, PHAN T D, et al. Transition from ion-coupled to electron-only reconnection: Basic physics and implications for plasma turbulence[J]. Physics of Plasmas, 2019, 26(8): 082307 doi: 10.1063/1.5090403
|
| [49] |
CALIFANO F, CERRI S S, FAGANELLO M, et al. Electron-only reconnection in plasma turbulence[J]. Frontiers in Physics, 2020, 8: 317 doi: 10.3389/fphy.2020.00317
|
| [50] |
VEGA C, ROYTERSHTEYN V, DELZANNO G L, et al. Electron-only reconnection in Kinetic-Alfvén turbulence[J]. The Astrophysical Journal Letters, 2020, 893(1): L10 doi: 10.3847/2041-8213/ab7eba
|
| [51] |
LU Q M, YANG Z W, WANG H Y, et al. Two-dimensional particle-in-cell simulation of magnetic reconnection in the downstream of a quasi-perpendicular shock[J]. The Astrophysical Journal, 2021, 919(1): 28 doi: 10.3847/1538-4357/ac18c0
|
| [52] |
GUAN Y D, LU Q M, LU S, et al. Reconnection rate and transition from ion-coupled to electron-only reconnection[J]. The Astrophysical Journal, 2023, 958(2): 172 doi: 10.3847/1538-4357/ad05b8
|
| [53] |
LIU D K, LU S, LU Q M, et al. Spontaneous onset of collisionless magnetic reconnection on an electron scale[J]. The Astrophysical Journal Letters, 2020, 890(2): L15 doi: 10.3847/2041-8213/ab72fe
|
| [54] |
LIU D K, HUANG K, LU Q M, et al. The evolution of collisionless magnetic reconnection from electron scales to ion scales[J]. The Astrophysical Journal, 2021, 922(1): 51 doi: 10.3847/1538-4357/ac2900
|
| [55] |
AN X, ARTEMYEV A, ANGELOPOULOS V, et al. Ki-netic equilibrium of two-dimensional force-free current sheets[J]. The Astrophysical Journal, 2023, 952(1): 36 doi: 10.3847/1538-4357/acdc1c
|
| [56] |
LIU Y H, HESSE M, GUO F, et al. Why does steady-state magnetic reconnection have a maximum local rate of order 0.1?[J]. Physical Review Letters, 2017, 118(8): 085101 doi: 10.1103/PhysRevLett.118.085101
|
| [57] |
GOLDMAN M V, NEWMAN D L, LAPENTA G. What can we learn about magnetotail reconnection from 2D PIC Harris-Sheet simulations?[J]. Space Science Reviews, 2016, 199(1): 651-688 doi: 10.1007/s11214-015-0154-y
|
| [58] |
CHANG C, LU Q M, LU S, et al. Ion and electron motions in the outer electron diffusion region of collisionless magnetic reconnection[J]. Earth and Planetary Physics, 2024, 8(3): 472-478 doi: 10.26464/epp2024020
|
| [59] |
WYGANT J R, CATTELL C A, LYSAK R, et al. Cluster observations of an intense normal component of the electric field at a thin reconnecting current sheet in the tail and its role in the shock-like acceleration of the ion fluid into the separatrix region[J]. Journal of Geophysical Research: Space Physics, 2005, 110(A9): A09206 doi: 10.1029/2004JA010708
|
| [60] |
HUANG C, LU Q M, WANG S. The mechanisms of electron acceleration in antiparallel and guide field magnetic reconnection[J]. Physics of Plasmas, 2010, 17(7): 072306 doi: 10.1063/1.3457930
|
| [61] |
HUANG C, LU Q, YANG Z, et al. The evolution of electron current sheet and formation of secondary islands in guide field reconnection[J]. Nonlinear Processes in Geophysics, 2011, 18(5): 727-733 doi: 10.5194/npg-18-727-2011
|