| Citation: | FENG Jundong, TIAN Liuxin, LI Qian, ZHAO Xida, YANG Yingqing, WANG Weitai. Effects of Radiation and Simulated Weightlessness on Rat EEG and Its Mechanism (in Chinese). Chinese Journal of Space Science, 2025, 45(1): 162-178 doi: 10.11728/cjss2025.01.2023-0149 |
| [1] |
GARRETT-BAKELMAN F E, DARSHI M, GREEN S J, et al. The NASA twins study: a multidimensional analysis of a year-long human spaceflight[J]. Science, 2019, 364(6436): eaau8650 doi: 10.1126/science.aau8650
|
| [2] |
TU D N, BASNER M, SMITH M G, et al. Dynamic ensemble prediction of cognitive performance in spaceflight[J]. Scientific Reports, 2022, 12(1): 11032 doi: 10.1038/s41598-022-14456-8
|
| [3] |
DEMERTZI A, VAN OMBERGEN A, TOMILOVSKAYA E, et al. Cortical reorganization in an astronaut’s brain after long-duration spaceflight[J]. Brain Structure and Function, 2015, 221(5): 2873-2876
|
| [4] |
ALGEDA F R, ELTAHAWY N A, SHEDID S M, et al. The impact of gamma-radiation on the cerebral- and cerebellar- cortex of male rats' brain[J]. Brain Research Bulletin, 2022, 186: 136-142 doi: 10.1016/j.brainresbull.2022.05.011
|
| [5] |
ZHANG J Y, HU B, CHEN W J, et al. Quantitative EEG and its correlation with cardiovascular, cognition and mood state: an integrated study in simulated microgravity[J]. Microgravity Science and Technology, 2014, 26(6): 401-418 doi: 10.1007/s12217-014-9388-7
|
| [6] |
CUCINOTTA F A. Review of NASA approach to space radiation risk assessments for mars exploration[J]. Health Physics, 2015, 108(2): 131-142 doi: 10.1097/HP.0000000000000255
|
| [7] |
LIU L R, LIU J C, BAO J S, et al. Interaction of microglia and astrocytes in the neurovascular unit[J]. Frontiers in Immunology, 2020, 11: 1024 doi: 10.3389/fimmu.2020.01024
|
| [8] |
LISJAK M, POTOKAR M, ZOREC R, et al. Indirect role of AQP4b and AQP4d isoforms in dynamics of astrocyte volume and orthogonal arrays of particles[J]. Cells, 2020, 9(3): 735 doi: 10.3390/cells9030735
|
| [9] |
STRÁDI A, SZABÓ J, INOZEMTSEV K O, et al. Comparative radiation measurements in the Russian segment of the International Space Station by applying passive dosimeters[J]. Radiation Measurements, 2017, 106: 267-272 doi: 10.1016/j.radmeas.2017.01.018
|
| [10] |
LI S Q, SONG Q Y, WU B, et al. Structural damage to the rat eye following long-term simulated weightlessness[J]. Experimental Eye Research, 2022, 223: 109200 doi: 10.1016/j.exer.2022.109200
|
| [11] |
ZHANG M Y, LIU D, WANG Q S, et al. Detection of alertness-related EEG signals based on decision fused BP neural network[J]. Biomedical Signal Processing and Control, 2022, 74: 103479 doi: 10.1016/j.bspc.2022.103479
|
| [12] |
黄迪. 细胞焦亡介导X射线和安罗替尼协同治疗食管鳞状细胞癌的作用机制研究[D]. 济南: 山东大学, 2023
HUANG Di. The Role and Mechanism of Pyroptosis in X-ray Andanlotinib Therapy for Esophageal Squamous Cell Carcinoma[D]. Ji’nan: Shandong University, 2023
|
| [13] |
ANDREWS H L, BRACE K C. Terminal phenomena associated with massive doses of X-rays[J]. American Journal of Physiology-Legacy Content, 1953, 175(1): 138-140 doi: 10.1152/ajplegacy.1953.175.1.138
|
| [14] |
MCFARLAND W L, LEVIN S G. Electroencephalographic responses to 2500 Rads of whole-body gamma-neutron radiation in the monkey Macaca mulatta[J]. Radiation Research, 1974, 58: 60-73 doi: 10.2307/3573949
|
| [15] |
LOGANOVSKY K N, YURYEV K L. EEG patterns in persons exposed to ionizing radiation as a result of the Chernobyl accident: part 1: conventional EEG analysis[J]. The Journal of Neuropsychiatry and Clinical Neurosciences, 2001, 13(4): 441-458 doi: 10.1176/jnp.13.4.441
|
| [16] |
SPIRONELLI C, BUSENELLO J, ANGRILLI A. Supine posture inhibits cortical activity: evidence from Delta and Alpha EEG bands[J]. Neuropsychologia, 2016, 89: 125-131 doi: 10.1016/j.neuropsychologia.2016.06.015
|
| [17] |
CHOI J W, JEONG M H, HER S J, et al. Abnormal sleep delta rhythm and interregional phase synchrony in patients with restless legs syndrome and their reversal by dopamine agonist treatment[J]. Journal of Clinical Neurology, 2017, 13(4): 340-350 doi: 10.3988/jcn.2017.13.4.340
|
| [18] |
LIN C T, KING J T, CHUANG C H, et al. Exploring the brain responses to driving fatigue through simultaneous EEG and fNIRS measurements[J]. International Journal of Neural Systems, 2020, 30(1): 1950018 doi: 10.1142/S0129065719500187
|
| [19] |
WASCHER E, RASCH B, SÄNGER J, et al. Frontal theta activity reflects distinct aspects of mental fatigue[J]. Biological Psychology, 2014, 96: 57-65 doi: 10.1016/j.biopsycho.2013.11.010
|
| [20] |
CAVINESS J N, UTIANSKI R L, HENTZ J G, et al. Differential spectral quantitative electroencephalography patterns between control and Parkinson’s disease cohorts[J]. European Journal of Neurology, 2016, 23(2): 387-392 doi: 10.1111/ene.12878
|
| [21] |
GERAEDTS V J, BOON L I, MARINUS J, et al. Clinical correlates of quantitative EEG in Parkinson disease: a systematic review[J]. Neurology, 2018, 91(19): 871-883 doi: 10.1212/WNL.0000000000006473
|
| [22] |
D'ATRI A, SCARPELLI S, GORGONI M, et al. EEG alterations during wake and sleep in mild cognitive impairment and Alzheimer’s disease[J]. iScience, 2021, 24(4): 102386 doi: 10.1016/j.isci.2021.102386
|
| [23] |
SARMAH R J, KUNDU S. Stable layers of pure myelin basic protein (MBP): structure, morphology and hysteresis behaviors[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 662: 130973 doi: 10.1016/j.colsurfa.2023.130973
|
| [24] |
GOYAL H, SINGH N, GURJAR O P, et al. Radiation induced demyelination in cervical spinal cord of the head and neck cancer patients after receiving radiotherapy[J]. Journal of Biomedical Physics and Engineering, 2019, 10(1): 1-6
|
| [25] |
CHEN Q H, YUAN F F, DU L L et al. The clinical analysis of 26 patients with acute demyelinating encephalopathy[J]. Journal of Brain and Nervous Diseases, 2013, 21(1): 4-6
|
| [26] |
DEANTONI M, BAILLET M, HAMMAD G, et al. Association between sleep slow-wave activity and in-vivo estimates of myelin in healthy young men[J]. NeuroImage, 2023, 272: 120045 doi: 10.1016/j.neuroimage.2023.120045
|
| [27] |
AKIYAMA K, TANAKA R, SATO M, et al. Cognitive dysfunction and histological findings in adult rats one year after whole brain irradiation[J]. Neurologia Medico-Chirurgica, 2001, 41(12): 590-598 doi: 10.2176/nmc.41.590
|
| [28] |
PIAO J, MAJOR T, AUYEUNG G, et al. Human embryonic stem cell-derived oligodendrocyte progenitors remyelinate the brain and rescue behavioral deficits following radiation[J]. Cell Stem Cell, 2015, 16(2): 198-210 doi: 10.1016/j.stem.2015.01.004
|
| [29] |
XIONG W F, QIU S J, WANG H Z, et al. 1H‐MR spectroscopy and diffusion tensor imaging of normal‐appearing temporal white matter in patients with nasopharyngeal carcinoma after irradiation: Initial experience[J]. Journal of Magnetic Resonance Imaging, 2013, 37(1): 101-108 doi: 10.1002/jmri.23788
|
| [30] |
LOWE M C, MONEY K M, MATTHEWS E, et al. Case of autoimmune GFAP astrocytopathy with eosinophils in the cerebrospinal fluid[J]. Journal of Neuroimmunology, 2023, 385: 578249 doi: 10.1016/j.jneuroim.2023.578249
|
| [31] |
COLANGELO A M, CIRILLO G, LAVITRANO M L, et al. Targeting reactive astrogliosis by novel biotechnological strategies[J]. Biotechnology Advances, 2012, 30(1): 261-271 doi: 10.1016/j.biotechadv.2011.06.016
|
| [32] |
NAGHIEH P, DELAVAR A, AMIRI M, et al. Astrocyte’s self-repairing characteristics improve working memory in spiking neuronal networks[J]. Iscience, 2023, 26(12): 108241 doi: 10.1016/j.isci.2023.108241
|
| [33] |
MURGAS P, GODOY B, VON BERNHARDI R. Aβ potentiates inflammatory activation of glial cells induced by scavenger receptor ligands and inflammatory mediators in culture[J]. Neurotoxicity Research, 2012, 22(1): 69-78 doi: 10.1007/s12640-011-9306-3
|
| [34] |
GARBER C, VASEK M J, VOLLMER L L, et al. Astrocytes decrease adult neurogenesis during virus-induced memory dysfunction via IL-1[J]. Nature Immunology, 2018, 19(2): 151-161 doi: 10.1038/s41590-017-0021-y
|
| [35] |
FOLEY J, BLUTSTEIN T, LEE S, et al. Astrocytic IP3/Ca2+ signaling modulates theta rhythm and REM sleep[J]. Frontiers in Neural Circuits, 2017, 11: 3
|
| [36] |
LEE H S, GHETTI A, PINTO-DUARTE A, et al. Astrocytes contribute to gamma oscillations and recognition memory[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(32): E3343-E3352
|
| [37] |
KENKHUIS B, SOMARAKIS A, KLEINDOUWEL L R T, et al. Co-expression patterns of microglia markers Iba1, TMEM119 and P2RY12 in Alzheimer’s disease[J]. Neurobiology of Disease, 2022, 167: 105684 doi: 10.1016/j.nbd.2022.105684
|
| [38] |
GUO S R, WANG H, YIN Y F. Microglia polarization from M1 to M2 in neurodegenerative diseases[J]. Frontiers in Aging Neuroscience, 2022, 14: 815347 doi: 10.3389/fnagi.2022.815347
|
| [39] |
WANG H X, LIU C, HAN M, et al. TRAM1 promotes microglia M1 polarization[J]. Journal of Molecular Neuroscience, 2016, 58(2): 287-296 doi: 10.1007/s12031-015-0678-3
|
| [40] |
WU J, DING D H, LI Q Q, et al. Lipoxin A4 regulates lipopolysaccharide-induced BV2 microglial activation and differentiation via the notch signaling pathway[J]. Frontiers in Cellular Neuroscience, 2019, 13: 19 doi: 10.3389/fncel.2019.00019
|
| [41] |
GAVILANES A W D, GANTERT M, STRACKX E, et al. Increased EEG delta frequency corresponds to chorioamnionitis-related brain injury[J]. Frontiers in Bioscience (Scholar Edition), 2010, 2(2): 432-438
|
| [42] |
GRIGOROVSKY V, BARDAKJIAN B L. Neuro-glial network model of postictal generalized EEG suppression (PGES)[C]//2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Honolulu, HI, USA: IEEE, 2018: 2044-2047
|