| Citation: | ZHANG Yiyue, ZOU Ziming, FANG Shaofeng. Identification Model of Pi2 Pulsation Based on One-dimensional Residual Convolutional Neural Network (in Chinese). Chinese Journal of Space Science, 2025, 45(1): 66-81 doi: 10.11728/cjss2025.01.2024-0018 |
| [1] |
JACOBS J A, KATO Y, MATSUSHITA S, et al. Classification of geomagnetic micropulsations[J]. Journal of Geophysical Research, 1964, 69(1): 180-181 doi: 10.1029/JZ069i001p00180
|
| [2] |
TAKAHASHI K, LEE D H, NOSÉ M, et al. CRRES electric field study of the radial mode structure of Pi2 pulsations[J]. Journal of Geophysical Research: Space Physics, 2003, 108(A5): 1210
|
| [3] |
SAITO T, YUMOTO K, KOYAMA Y. Magnetic pulsation Pi2 as a sensitive indicator of magnetospheric substorm[J]. Planetary and Space Science, 1976, 24(11): 1025-1029 doi: 10.1016/0032-0633(76)90120-3
|
| [4] |
CHEN L, SHIOKAWA K, MIYOSHI Y, et al. Correspondence of Pi2 pulsations, aurora luminosity, and plasma flux fluctuation near a substorm brightening aurora: Arase observations[J]. Journal of Geophysical Research: Space Physics, 2023, 128(10): e2023JA031648 doi: 10.1029/2023JA031648
|
| [5] |
SIMHA C P, KATLAMUDI M R, BULUSU J. Low latitude Pi2 pulsations at Desalpar, Gujarat, India: A statistical analysis of the influences of magnetic storms/substorms, seasons, and solar cycles[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2023, 252: 106145 doi: 10.1016/j.jastp.2023.106145
|
| [6] |
KEILING A, TAKAHASHI K. Review of Pi2 models[J]. Space Science Reviews, 2011, 161(1): 63-148
|
| [7] |
KWON H J, KIM K H, JUN C W, et al. Low‐latitude Pi2 pulsations during intervals of quiet geomagnetic conditions (K p≤1)[J]. Journal of Geophysical Research: Space Physics, 2013, 118(10): 6145-6153 doi: 10.1002/jgra.50582
|
| [8] |
NOSÉ M, IYEMORI T, TAKEDA M, et al. Automated detection of Pi 2 pulsations using wavelet analysis: 1. Method and an application for substorm monitoring[J]. Earth, Planets and Space, 1998, 50(9): 773-783
|
| [9] |
MURPHY K R, JONATHAN RAE I, MANN I R, et al. Wavelet‐based ULF wave diagnosis of substorm expansion phase onset[J]. Journal of Geophysical Research: Space Physics, 2009, 114(A1): A00C16
|
| [10] |
KATSAVRIAS C, PAPADIMITRIOU C, HILLARIS A, et al. Application of wavelet methods in the investigation of geospace disturbances: a review and an evaluation of the approach for quantifying wavelet power[J]. Atmosphere, 2022, 13(3): 499 doi: 10.3390/atmos13030499
|
| [11] |
SUTCLIFFE P R. Substorm onset identification using neural networks and Pi2 pulsations[J]. Annales Geophysicae, 1997, 15(10): 1257-1264 doi: 10.1007/s00585-997-1257-x
|
| [12] |
RABIE E, HAFEZ A G, SAAD O M, et al. Geomagnetic micro-pulsation automatic detection via deep leaning approach guided with discrete wavelet transform[J]. Journal of King Saud University-Science, 2021, 33(1): 101263 doi: 10.1016/j.jksus.2020.101263
|
| [13] |
BALASIS G, AMINALRAGIA-GIAMINI S, PAPADIMITRIOU C, et al. A machine learning approach for automated ULF wave recognition[J]. Journal of Space Weather and Space Climate, 2019, 9: A13 doi: 10.1051/swsc/2019010
|
| [14] |
ANTONOPOULOU A, BALASIS G, PAPADIMITRIOU C, et al. Convolutional neural networks for automated ULF wave classification in swarm time series[J]. Atmosphere, 2022, 13(9): 1488 doi: 10.3390/atmos13091488
|
| [15] |
OMONDI S, YOSHIKAWA A, ZAHRA W K, et al. Automatic detection of auroral Pc5 geomagnetic pulsation using machine learning approach guided with discrete wavelet transform[J]. Advances in Space Research, 2023, 72(3): 866-883 doi: 10.1016/j.asr.2022.06.063
|
| [16] |
PAPPOE J A, YOSHIKAWA A, KANDIL A, et al. A machine learning approach combined with wavelet analysis for automatic detection of Pc5 geomagnetic pulsations observed at geostationary orbits[J/OL]. Advances in Space Research, 2023. (2023-11-03). [2024-01-30]. https://www.sciencedirect.com/science/article/abs/pii/S0273117723008736
|
| [17] |
TERAMOTO M, MIYOSHI Y, MATSUOKA A, et al. Off-Equatorial Pi2 pulsations inside and outside the plasmapause observed by the Arase satellite[J]. Journal of Geophysical Research: Space Physics, 2022, 127(1): e2021JA029677 doi: 10.1029/2021JA029677
|
| [18] |
TAKAHASHI K, LYSAK R, VELLANTE M. Statistical analysis of Pi2 pulsations observed by Van Allen Probes[J]. Journal of Geophysical Research: Space Physics, 2022, 127(9): e2022JA030674 doi: 10.1029/2022JA030674
|
| [19] |
曾正君, 张莹, 杜爱民, 等. 顶部电离层Pc3压缩波的波动特征[J]. 地球物理学进展, 2020, 35(3): 918-924 doi: 10.6038/pg2020DD0174
ZENG Zhengjun, ZHANG Ying, DU Aimin, et al. Characteristics of Pc3 compressional waves in the topside ionosphere[J]. Progress in Geophysics, 2020, 35(3): 918-924 doi: 10.6038/pg2020DD0174
|
| [20] |
ZHANG Yiyue, ZOU Ziming, FANG Shaofeng. Pi2 pulsation event annotation time-series dataset[DB/OL]. V3. Science Data Bank, 2024. [2024-04-26]. https://cstr.cn/14804.11.sciencedb.space.01648
|
| [21] |
中国气象局. QX/T 135-2011 太阳活动水平分级[S]. 北京: 中国气象出版社, 2011
China Meteorological Administration. QX/T 135-2011 Classification for solar activity level[S]. Beijing: China Meteorological Press, 2011
|
| [22] |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA: IEEE, 2016: 770-778
|