| Citation: | NIU Ben, HUANG Zhi. Using Deep Learning to Achieve Short Term Business Forecast of Dst Index (in Chinese). Chinese Journal of Space Science, 2025, 45(1): 91-101 doi: 10.11728/cjss2025.01.2024-0034 |
| [1] |
ZHU Yuncong. Research on the Correlation between Ionospheric TEC and Solar Activity Parameters[D]. Zibo: Shandong University of Technology, 2022. DOI: 10.27276/d.cnki.gsdgc.2022.000667
|
| [2] |
BURTON R K, MCPHERRON R L, RUSSELL C T. An empirical relationship between interplanetary conditions and Dst[J]. Journal of Geophysical Research, 1975, 80(31): 4204-4214 doi: 10.1029/ja080i031p04204
|
| [3] |
TEMERIN M, LI X L. A new model for the prediction of Dst on the basis of the solar wind[J]. Journal of Geophysical Research: Space Physics, 2002, 107 (A12): SMP 31-1-SMP 31-8. DOI: 10.1029/2001JA007532
|
| [4] |
NURAENI F, RUHIMAT M, ARIS M A, et al. Development of 24 hours Dst index prediction from solar wind data and IMF B z using NARX[J]. Journal of Physics: Conference Series, 2022, 2214(1): 012024 doi: 10.1088/1742-6596/2214/1/012024
|
| [5] |
李淑慧, 彭军还, 徐伟超, 等. 利用神经网络预报短期电离层TEC变化[J]. 测绘科学, 2013, 38(1): 8-9,12
LI Shuhui, PENG JunHuan, XU Weichao, et al. Short-term ionospheric TEC change prediction by neural network[J]. Science of Surveying and Mapping, 2013, 38(1): 8-9,12
|
| [6] |
LETHY A, EL-ERAKI M A, SAMY A, et al. Prediction of the Dst index and analysis of its dependence on solar wind parameters using neural network[J]. Space Weather, 2018, 16(9): 1277-1290 doi: 10.1029/2018SW001863
|
| [7] |
XU W W, ZHU Y M, ZHU L, et al. A class of Bayesian machine learning model for forecasting Dst during intense geomagnetic storms[J]. Advances in Space Research, 2023, 72(9): 3882-3889 doi: 10.1016/j.asr.2023.07.009
|
| [8] |
杨旭, 朱亚光, 杨升高, 等. LSTM神经网络在太阳F10.7射电流量中期预报中的应用[J]. 空间科学学报, 2020, 40(2): 176-185 doi: 10.11728/cjss2020.02.176
YANG Xu, ZHU Yaguang, YANG Shenggao, et al. Application of LSTM neural network in F10.7 solar radio flux mid-term forecast[J]. Chinese Journal of Space Science, 2020, 40(2): 176-185 doi: 10.11728/cjss2020.02.176
|
| [9] |
ZHANG J Y, FENG Y, ZHANG J X, et al. The short time prediction of the Dst index based on the long-short time memory and empirical mode decomposition–long-short time memory models[J]. Applied Sciences, 2023, 13(21): 11824 doi: 10.3390/app132111824
|
| [10] |
GRUET M A, CHANDORKAR M, SICARD A, et al. Multiple-hour-ahead forecast of the Dst index using a combination of long short-term memory neural network and Gaussian process[J]. Space Weather, 2018, 16(11): 1882-1896 doi: 10.1029/2018SW001898
|
| [11] |
LIU H J, LEI D X, YUAN J, et al. Ionospheric TEC prediction in China based on the multiple-attention LSTM model[J]. Atmosphere, 2022, 13(11): 1939 doi: 10.3390/atmos13111939
|
| [12] |
ŞENTÜRK E, SAQIB M, ADIL M A. A Multi-Network based Hybrid LSTM model for ionospheric anomaly detection: A case study of the Mw 7.8 Nepal earthquake[J]. Advances in Space Research, 2022, 70(2): 440-455 doi: 10.1016/j.asr.2022.04.057
|
| [13] |
杨旭, 崔瑞飞, 田超, 等. 基于线性样条和CNN-LSTM的北斗卫星缺失数据处理方法[J]. 空间科学学报, 2022, 42(1): 163-169 doi: 10.11728/cjss2022.01.201116100
YANG Xu, CUI Ruifei, TIAN Chao, et al. Linear spline and CNN-LSTM for missing values imputation of Beidou satellite radiation dose data[J]. Chinese Journal of Space Science, 2022, 42(1): 163-169 doi: 10.11728/cjss2022.01.201116100
|
| [14] |
ABDUALLAH Y, WANG J T L, BOSE P, et al. Forecasting the disturbance storm time index with Bayesian deep learning[C]//The International FLAIRS Conference Proceedings. Florida, USA, 2022, 35
|
| [15] |
LI Leilei. Deep Learning Modeling Research on the Relationship between Solar Wind and Geomagnetic Storms and Earthquakes[D]. Dalian: Dalian University of Technology, 2022. DOI: 10.26991/d.cnki.gdllu.2022.001958
|
| [16] |
BEJ A, BANERJEE A, CHATTERJEE T N, et al. One-hour ahead prediction of the Dst index based on the optimum state space reconstruction and pattern recognition[J]. The European Physical Journal Plus, 2022, 137(4): 479 doi: 10.1140/epjp/s13360-022-02687-7
|
| [17] |
WANG Zhiyuan. Time Series Forecasting with Depth Probabilistic Models[D]. Chengdu: University of Electronic Science and Technology of China, 2023. DOI: 10.27005/d.cnki.gdzku.2023.000727
|
| [18] |
TANG X G, FENG J H, ZHANG B Q, et al. Radio frequency fingerprint-based satellite TT&C ground station identification method[J]. Journal of Beijing Institute of Technology, 2023, 32(1): 1-12 doi: 10.15918/j.jbit1004-0579.2022.074
|
| [19] |
GU J X, WANG Z H, KUEN J, et al. Recent advances in convolutional neural networks[J]. Pattern Recognition, 2018, 77: 354-377 doi: 10.1016/j.patcog.2017.10.013
|
| [20] |
MA H Y, WU Y, LIU F, et al. Design of Super-X Test Facility monitoring and early warning system based on improved CNN-BiLSTM model[C]//2023 International Conference on Image Processing, Computer Vision and Machine Learning (ICICML). Chengdu, China: IEEE, 2023: 1015-1021. DOI: 10.1109/ICICML60161.2023.10424770
|
| [21] |
SONG Y, SEBE N, WANG W. On the eigenvalues of global covariance pooling for fine-grained visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(3): 3554-3566
|
| [22] |
DEY R, SALEM F M. Gate-variants of Gated Recurrent Unit (GRU) neural networks[C]//2017 IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS). Boston, MA, USA: IEEE, 2017: 1597-1600. DOI: 10.1109/MWSCAS.2017.8053243
|
| [23] |
唐丝语, 黄智. 基于因果卷积与LSTM网络的电离层总电子含量预报[J]. 空间科学学报, 2022, 42(3): 357-365 doi: 10.11728/cjss2022.03.210401042
TANG Siyu, HUANG Zhi. Prediction of ionospheric total electron content based on causal convolutional and LSTM network[J]. Chinese Journal of Space Science, 2022, 42(3): 357-365 doi: 10.11728/cjss2022.03.210401042
|