| Citation: | LI Lin, WANG Bin, ZHOU Xiaoji, CHEN Xuzong, LI Tang, LIU Liang. Research on Ultracold Atom Physics in Microgravity (in Chinese). Chinese Journal of Space Science, 2025, 45(1): 29-55 doi: 10.11728/cjss2025.01.2024-0174 |
| [1] |
BOSE. Plancks gesetz und lichtquantenhypothese[J]. Zeitschrift für Physik, 1924, 26(1): 178-181
|
| [2] |
EINSTEIN A. Quantentheorie des einatomigen idealen Gases[J]. SB Preuss. Akad. Wiss. phys. -math. Klasse, 1924
|
| [3] |
ANDERSON M H, ENSHER J R, MATTHEWS M R, et al. Observation of Bose-Einstein condensation in a dilute atomic vapor[J]. Science, 1995, 269(5221): 198-201 doi: 10.1126/science.269.5221.198
|
| [4] |
AMMANN H, CHRISTENSEN N. Delta kick cooling: a new method for cooling atoms[J]. Physical Review Letters, 1997, 78(11): 2088-2091 doi: 10.1103/PhysRevLett.78.2088
|
| [5] |
LEANHARDT A E, PASQUINI T A, SABA M, et al. Cooling Bose-Einstein condensates below 500 Picokelvin[J]. Science, 2003, 301(5639): 1513-1515 doi: 10.1126/science.1088827
|
| [6] |
WANG L, ZHANG P, CHEN X Z, et al. Generating a Picokelvin ultracold atomic ensemble in microgravity[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2013, 46(19): 195302 doi: 10.1088/0953-4075/46/19/195302
|
| [7] |
KASEVICH M A, RIIS E, CHU S, et al. RF spectroscopy in an atomic fountain[J]. Physical Review Letters, 1989, 63(6): 612-615 doi: 10.1103/PhysRevLett.63.612
|
| [8] |
LIU L, LÜ D S, CHEN W B, et al. In-orbit operation of an atomic clock based on laser-cooled 87Rb atoms[J]. Nature Communications, 2018, 9(1): 2760 doi: 10.1038/s41467-018-05219-z
|
| [9] |
LAURENT P, LEMONDE P, SIMON E, et al. A cold atom clock in absence of gravity[J]. The European Physical Journal D-Atomic, Molecular, Optical and Plasma Physics, 1998, 3(3): 201-204
|
| [10] |
ALONSO I, ALPIGIANI C, ALTSCHUL B, et al. Cold atoms in space: community workshop summary and proposed road-map[J]. EPJ Quantum Technology, 2022, 9(1): 30 doi: 10.1140/epjqt/s40507-022-00147-w
|
| [11] |
HEAVNER T P, HOLLBERG L, JEFFERTS S R, et al. Characterization of a cold cesium source for PARCS: primary atomic reference clock in space[J]. IEEE Transactions on Instrumentation and Measurement, 2001, 50(2): 500-502 doi: 10.1109/19.918176
|
| [12] |
吕德胜, 刘亮, 王育竹. 空间冷原子钟及其科学应用[J]. 载人航天, 2011, 17(1): 47-51 doi: 10.3969/j.issn.1674-5825.2011.01.011
LÜ Desheng, LIU Liang, WANG Yuzhu. Space cold atomic clock and its scientific applications[J]. Manned Spaceflight, 2011, 17(1): 47-51 doi: 10.3969/j.issn.1674-5825.2011.01.011
|
| [13] |
MENG Y L, JIANG X J, WU J, et al. Satellite-borne atomic clock based on diffuse laser-cooled atoms[J]. Frontiers in Physics, 2022, 10: 985586 doi: 10.3389/fphy.2022.985586
|
| [14] |
KOVACHY T, HOGAN J M, SUGARBAKER A, et al. Matter wave lensing to picokelvin temperatures[J]. Physical Review Letters, 2015, 114(14): 143004 doi: 10.1103/PhysRevLett.114.143004
|
| [15] |
BASSI A, CACCIAPUOTI L, CAPOZZIELLO S, et al. A way forward for fundamental physics in space[J]. NPJ Microgravity, 2022, 8(1): 49 doi: 10.1038/s41526-022-00229-0
|
| [16] |
TINO G M, BASSI A, BIANCO G, et al. SAGE: a proposal for a space atomic gravity explorer[J]. The European Physical Journal D, 2019, 73(11): 228 doi: 10.1140/epjd/e2019-100324-6
|
| [17] |
SUN Y, LIU L. Designing precision measurement of the gravitational Aharonov-Bohm effect in microgravity[OL]. Fundamental Research, 2024. https://doi.org/10.1016/j.fmre.2024.05.006
|
| [18] |
LIU L. Exploring the Universe with matter waves[J]. Nature, 2018, 562(7727): 351-352 doi: 10.1038/d41586-018-07009-5
|
| [19] |
VOGEL A, SCHMIDT M, SENGSTOCK K, et al. Bose–Einstein condensates in microgravity[J]. Applied Physics B, 2006, 84(4): 663-671 doi: 10.1007/s00340-006-2359-y
|
| [20] |
SLEATOR T, BERMAN P R, DUBETSKY B. High precision atom interferometry in a microgravity environment[OL]. arXiv preprint arXiv: 9905047, 1999
|
| [21] |
PETERS A, CHUNG K Y, CHU S. Measurement of gravitational acceleration by dropping atoms[J]. Nature, 1999, 400(6747): 849-852 doi: 10.1038/23655
|
| [22] |
PETERS A, CHUNG K Y, YOUNG B, et al. Precision atom interferometry[J]. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 1997, 355(1733): 2223-2233 doi: 10.1098/rsta.1997.0121
|
| [23] |
CHEN X Z, FAN B. The emergence of picokelvin physics[J]. Reports on Progress in Physics, 2020, 83(7): 076401 doi: 10.1088/1361-6633/ab8ab6
|
| [24] |
ADAMS C S, LEE H J, DAVIDSON N, et al. Evaporative cooling in a crossed dipole trap[J]. Physical Review Letters, 1955, 74(18): 3577-3580
|
| [25] |
BARRETT M D, SAUER J A, CHAPMAN M S. All-optical formation of an atomic Bose-Einstein condensate[J]. Physical Review Letters, 2001, 87(1): 010404 doi: 10.1103/PhysRevLett.87.010404
|
| [26] |
HÄNSEL W, HOMMELHOFF P, HÄNSCH T W, et al. Bose–Einstein condensation on a microelectronic chip[J]. Nature, 2001, 413(6855): 498-501 doi: 10.1038/35097032
|
| [27] |
FOLMAN R, KRÜGER P, SCHMIEDMAYER J, et al. Microscopic atom optics: from wires to an atom chip[J]. Advances in Atomic, Molecular, and Optical Physics, 2002, 48: 263-356
|
| [28] |
FORTÁGH J, ZIMMERMANN C. Magnetic microtraps for ultracold atoms[J]. Reviews of Modern Physics, 2007, 79(1): 235-289 doi: 10.1103/RevModPhys.79.235
|
| [29] |
周蜀渝, 龙全, 周善钰, 等. 玻色–爱因斯坦凝聚在中国科学院上海光机所实现[J]. 物理, 2002, 31(8): 481-482 doi: 10.3321/j.issn:0379-4148.2002.08.001
ZHOU Shuyu, LONG Quan, ZHOU Shanyu, et al. Realization of Bose-Einstein condensation in SIOM of Chinese Academy of Sciences[J]. Physics, 2002, 31(8): 481-482 doi: 10.3321/j.issn:0379-4148.2002.08.001
|
| [30] |
李晓林, 柯敏, 颜波, 等. 利用原子芯片上Z形磁阱囚禁中性87Rb原子[J]. 物理学报, 2007, 56(11): 6367-6372 doi: 10.3321/j.issn:1000-3290.2007.11.034
LI Xiaolin, KE Min, YAN Bo, et al. A Z-trap in an atom chip for trapping neutral 87Rb atoms[J]. Acta Physica Sinica, 2007, 56(11): 6367-6372 doi: 10.3321/j.issn:1000-3290.2007.11.034
|
| [31] |
HU J Z, URVOY A, VENDEIRO Z, et al. Creation of a Bose-condensed gas of 87Rb by laser cooling[J]. Science, 2017, 358(6366): 1078-1080 doi: 10.1126/science.aan5614
|
| [32] |
ZHANG C, YANG C, HU L, et al. Beijing drop tower microgravity adjustment towards 10–3~10−5 g level by Cold-Gas Thrusters[J]. Microgravity Science and Technology, 2023, 35(4): 39 doi: 10.1007/s12217-023-10060-1
|
| [33] |
ZHANG XQ, YUAN LG, WU WD, et al. Some key technics of drop tower experiment device of National Microgravity Laboratory (China)(NMLC)[J]. Science in China Ser. E Engineering & Materials Science, 2005, 48: 305-316.
|
| [34] |
胡文瑞, 康琦. 微重力科学前沿[J]. 科技导报, 2020, 38(10): 59-62
HU Wenrui, KANG Qi. Frontiers of microgravity science[J]. Science & Technology Review, 2020, 38(10): 59-62
|
| [35] |
LUO L, ZHOU HY, SUN YH, et al. Tsinghua university freefall facility (tuff): A 2.2 second drop tunnel for microgravity research[J]. Microgravity Science and Technology, 33, 1-19.
|
| [36] |
ZHANG J Q, DONG W B, WANG Z, et al. Development of a new microgravity experiment facility with electromagnetic launch[J]. Microgravity Science and Technology, 2021, 33(6): 68 doi: 10.1007/s12217-021-09915-2
|
| [37] |
VAN ZOEST T, GAALOUL N, SINGH Y, et al. Bose-Einstein condensation in microgravity[J]. Science, 2010, 328(5985): 1540-1543 doi: 10.1126/science.1189164
|
| [38] |
MÜNTINGA H, AHLERS H, KRUTZIK M, et al. Interferometry with Bose-Einstein condensates in microgravity[J]. Physical Review Letters, 2013, 110(9): 093602 doi: 10.1103/PhysRevLett.110.093602
|
| [39] |
VOGT C, WOLTMANN M, HERRMANN S, et al. Evaporative cooling from an optical dipole trap in microgravity[J]. Physical Review A, 2020, 101(1): 013634 doi: 10.1103/PhysRevA.101.013634
|
| [40] |
LANGLOIS M, DE SARLO L, HOLLEVILLE D, et al. Compact cold-atom clock for onboard Timebase: tests in reduced gravity[J]. Physical Review Applied, 2018, 10(6): 064007 doi: 10.1103/PhysRevApplied.10.064007
|
| [41] |
PETERMAN P, GIBBLE K, LAURENT P, et al. Microwave lensing frequency shift of the PHARAO laser-cooled microgravity atomic clock[J]. Metrologia, 2016, 53(2): 899 doi: 10.1088/0026-1394/53/2/899
|
| [42] |
SACCOCCIO M, LOESEL J, COATANTIEC C, et al. PHARAO space atomic clock: new developments on the laser source[C]//Proceedings of the SPIE 10568, International Conference on Space Optics—ICSO 2004. Toulouse, France: SPIE, 2017: 1056819
|
| [43] |
LAURENT P, ESNAUT F X, GIBBLE K, et al. Qualification and frequency accuracy of the space-based primary frequency standard PHARAO[J]. Metrologia, 2020, 57(5): 055005 doi: 10.1088/1681-7575/ab948b
|
| [44] |
LAURENT P, CLAIRON A, LEMONDE P, et al. The space clock PHARAO: functioning and expected performances[C]//IEEE International Frequency Control Symposium and PDA Exhibition Jointly with the 17th European Frequency and Time Forum, 2003. Proceedings of the 2003. Tampa, FL, USA: IEEE, 2003: 179-184
|
| [45] |
NYMAN R A, VAROQUAUX G, LIENHART F, et al. I. C. E. : a transportable atomic inertial sensor for test in microgravity[J]. Applied Physics B, 2006, 84(4): 673-681 doi: 10.1007/s00340-006-2395-7
|
| [46] |
STERN G, BATTELIER B, GEIGER R, et al. Light-pulse atom interferometry in microgravity[J]. The European Physical Journal D, 2009, 53(3): 353-357 doi: 10.1140/epjd/e2009-00150-5
|
| [47] |
GEIGER R, MÉNORET V, STERN G, et al. Detecting inertial effects with airborne matter-wave interferometry[J]. Nature Communications, 2011, 2(1): 474 doi: 10.1038/ncomms1479
|
| [48] |
BATTELIER B, BARRETT B, FOUCHÉ L, et al. Development of compact cold-atom sensors for inertial navigation[J]. Quantum Optics, 2016, 9900: 990004
|
| [49] |
BARRETT B, ANTONI-MICOLLIER L, CHICHET L, et al. Dual matter-wave inertial sensors in weightlessness[J]. Nature Communications, 2016, 7(1): 13786 doi: 10.1038/ncomms13786
|
| [50] |
ANTONI-MICOLLIER L, BARRETT B, CHICHET L, et al. Generation of high-purity low-temperature samples of 39K for applications in metrology[J]. Physical Review A, 2017, 96(2): 023608 doi: 10.1103/PhysRevA.96.023608
|
| [51] |
CONDON G, RABAULT M, BARRETT B, et al. All-optical Bose-Einstein condensates in microgravity[J]. Physical Review Letters, 2019, 123(24): 240402 doi: 10.1103/PhysRevLett.123.240402
|
| [52] |
PELLUET C, ARGUEL R, RABAULT M, et al. Atom interferometry in an Einstein elevator[OL]. arXiv preprint arXiv: 2407.07183, 2024
|
| [53] |
LÜ D S, REN W, SUN Y, et al. Characterization of laser cooling in microgravity via long-term operations in TianGong-2 space lab[J]. National Science Review, 2023, 10(4): nwac180 doi: 10.1093/nsr/nwac180
|
| [54] |
REN W, LI T, QU Q Z, et al. Development of a space cold atom clock[J]. National Science Review, 2020, 7(12): 1828-1836 doi: 10.1093/nsr/nwaa215
|
| [55] |
BECKER D, LACHMANN M D, SEIDEL S T, et al. Space-borne Bose–Einstein condensation for precision interferometry[J]. Nature, 2018, 562(7727): 391-395 doi: 10.1038/s41586-018-0605-1
|
| [56] |
LACHMANN M D, AHLERS H, BECKER D, et al. Ultracold atom interferometry in space[J]. Nature Communications, 2021, 12(1): 1317 doi: 10.1038/s41467-021-21628-z
|
| [57] |
KRUTZIK M. Matter Wave Interferometry in Microgravity[D]. Humboldt-Universität zu Berlin: Mathematisch-Naturwissenschaftliche Fakultät I, 2014
|
| [58] |
SORIANO M, AVELINE D, MCKEE M, et al. Cold atom laboratory mission system design[C]//2014 IEEE Aerospace Conference. Big Sky, MT, USA: IEEE, 2014
|
| [59] |
ELLIOTT E R, KRUTZIK M C, WILLIAMS J R, et al. NASA’s Cold Atom Lab (CAL): system development and ground test status[J]. NPJ Microgravity, 2018, 4(1): 16 doi: 10.1038/s41526-018-0049-9
|
| [60] |
AVELINE D C, WILLIAMS J R, ELLIOTT E R, et al. Observation of Bose–Einstein condensates in an Earth-orbiting research lab[J]. Nature, 2020, 582(7811): 193-197 doi: 10.1038/s41586-020-2346-1
|
| [61] |
FRYE K, ABEND S, BARTOSCH W, et al. The Bose-Einstein condensate and cold atom laboratory[J]. EPJ Quantum Technology, 2021, 8(1): 1 doi: 10.1140/epjqt/s40507-020-00090-8
|
| [62] |
CAROLLO R A, AVELINE D C, RHYNO B, et al. Observation of ultracold atomic bubbles in orbital microgravity[J]. Nature, 2022, 606(7913): 281-286 doi: 10.1038/s41586-022-04639-8
|
| [63] |
GAALOUL N, MEISTER M, CORGIER R, et al. A space-based quantum gas laboratory at picokelvin energy scales[J]. Nature Communications, 2022, 13(1): 7889 doi: 10.1038/s41467-022-35274-6
|
| [64] |
ELLIOTT E R, AVELINE D C, BIGELOW N P, et al. Quantum gas mixtures and dual-species atom interferometry in space[J]. Nature, 2023, 623(7987): 502-508 doi: 10.1038/s41586-023-06645-w
|
| [65] |
WILLIAMS J R, SACKETT C A, AHLERS H, et al. Interferometry of atomic matter waves in the cold atom lab onboard the International Space Station[OL]. arXiv preprint arXiv: 2402.14685, 2024
|
| [66] |
LÜ D S, PENG X K, REN W, et al. Design of a space atomic clock with intracavity cooling[C]//2017 Joint Conference of the European Frequency and Time Forum and IEEE International Frequency Control Symposium (EFTF/IFC). Besancon, France: IEEE, 2017: 623-624
|
| [67] |
ZHANG Z, XIANG J F, MENG Y M, et al. Design of a highly reliable and low-cost optical bench for laser cooling[J]. Optical Fiber Technology, 2022, 72: 102974 doi: 10.1016/j.yofte.2022.102974
|
| [68] |
ZHANG Z, XIANG J F, XU B, et al. Integrated, reliable laser system for an 87Rb cold atom fountain clock[J]. Chinese Physics B, 2023, 32(1): 013202 doi: 10.1088/1674-1056/ac9e95
|
| [69] |
DENG S M D, REN W, XIANG J F, et al. Cold atom microwave clock based on intracavity cooling in China Space Station[J]. NPJ Microgravity, 2024, 10(1): 66 doi: 10.1038/s41526-024-00407-2
|
| [70] |
DENG S M D, REN W, XIANG J F, et al. Physics package based on intracavity laser cooling 87Rb atoms for space cold atom microwave clock[J]. Chinese Physics B, 2024, 33(7): 070602 doi: 10.1088/1674-1056/ad4bc1
|
| [71] |
LI J T, CHEN X, ZHANG D F, et al. Realization of cold atom gyroscope in space[OL]. arXiv preprint arXiv: 2407.07183, 2024
|
| [72] |
HE M, CHEN X, FANG J, et al. The space cold atom interferometer for testing the equivalence principle in the China Space Station[J]. NPJ Microgravity, 2023, 9(1): 58 doi: 10.1038/s41526-023-00306-y
|
| [73] |
王翔, 王为. 天宫空间站关键技术特点综述[J]. 中国科学: 技术科学, 2021, 51(11): 1287-1298 doi: 10.1360/SST-2021-0304
WANG Xiang, WANG Wei. Key technical characteristics of the Tiangong Space Station[J]. Scientia Sinica: Technologica, 2021, 51(11): 1287-1298 doi: 10.1360/SST-2021-0304
|
| [74] |
GU Y D. The China Space Station: a new opportunity for space science[J]. National Science Review, 2022, 9(1): nwab219 doi: 10.1093/nsr/nwab219
|
| [75] |
GAO M, ZHAO G H, GU Y D. Recent progress in space science and applications of China’s Space Station in 2020–2022[J]. Chinese Journal of Space Science, 2022, 42(4): 503-510 doi: 10.11728/cjss2022.04.yg29
|
| [76] |
GU Y D, GAO M, ZHAO G H. Science research and utilization planning of China’s Space Station in operation period 2022-2032[J]. Chinese Journal of Space Science, 2020, 40(5): 609-614 doi: 10.11728/cjss2020.05.609
|
| [77] |
LUAN T, JIA T, CHEN X Z, et al. Optimized degenerate Bose—fermi mixture in microgravity: DSMC simulation of sympathetic cooling[J]. Chinese Physics Letters, 2014, 31(4): 043401 doi: 10.1088/0256-307X/31/4/043401
|
| [78] |
LUAN T, YAO H P, WANG L, et al. Two-stage crossed beam cooling with 6Li and 133Cs atoms in microgravity[J]. Optics Express, 2015, 23(9): 11378-11387 doi: 10.1364/OE.23.011378
|
| [79] |
YAO H P, LUAN T, LI C, et al. Comparison of different techniques in optical trap for generating picokelvin 3D atom cloud in microgravity[J]. Optics Communications, 2016, 359: 123-128 doi: 10.1016/j.optcom.2015.09.065
|
| [80] |
LUAN T, LI Y F, ZHANG X S, et al. Realization of two-stage crossed beam cooling and the comparison with Delta-kick cooling in experiment[J]. Review of Scientific Instruments, 2018, 89(12): 123110 doi: 10.1063/1.5046815
|
| [81] |
FAN B, ZHAO L H, ZHANG Y, et al. Numerical study of evaporative cooling in the Space Station[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2021, 54(1): 015302 doi: 10.1088/1361-6455/abc72d
|
| [82] |
李琳, 熊炜, 汪斌, 等. 中国空间站超冷原子物理实验柜设计与验证[J]. 中国激光, 2024, 51(11): 1101014
LI Lin, XIONG Wei, WANG Bin, et al. Design and verification of the cold atom physics rack installed in the Chinese Space Station[J]. Chinese Journal of Lasers, 2024, 51(11): 1101014
|
| [83] |
LIU Q, XIE Y, LI L, et al. Development of an ultra-high vacuum system for a cold atom physics rack in space[J]. Vacuum, 2021, 190: 110192 doi: 10.1016/j.vacuum.2021.110192
|
| [84] |
LI L, XIONG W, WANG B, et al. The design, realization, and validation of the scheme for quantum degenerate research in microgravity[J]. IEEE Photonics Journal, 2023, 15(3): 7100508
|
| [85] |
李文文, 刘乾, 梁昂昂, 等. 空间超冷原子实验两维磁光阱系统的集成设计与实现[J]. 中国激光, 2022, 49(11): 1112001 doi: 10.3788/CJL202249.1112001
LI Wenwen, LIU Qian, LIANG Angang, et al. Integrated design and realization of two-dimensional magneto-optical trap for ultra-cold atomic physics rack in space[J]. Chinese Journal of Lasers, 2022, 49(11): 1112001 doi: 10.3788/CJL202249.1112001
|
| [86] |
洪毅, 侯霞, 陈迪俊, 等. 基于Rb87调制转移光谱稳频技术研究[J]. 中国激光, 2021, 48(21): 2101003 doi: 10.3788/CJL202148.2101003
HONG Yi, HOU Xia, CHEN Dijun, et al. Research on frequency stabilization technology of modulation transfer spectroscopy based on Rb87[J]. Chinese Journal of Lasers, 2021, 48(21): 2101003 doi: 10.3788/CJL202148.2101003
|
| [87] |
LI L, ZHOU C Y, XIONG W, et al. All-fiber laser system for all-optical 87Rb Bose Einstein condensate to space application[J]. Applied Optics, 2023, 62(29): 7844-7851 doi: 10.1364/AO.497749
|
| [88] |
XIE Y, FAN B, LI H, et al. Ground experiment verification and on-orbit prediction of the two-stage cooling at pK level in the Chinese Space Station[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2022, 55(20): 205301 doi: 10.1088/1361-6455/ac8e3d
|
| [89] |
LI H, YU J C, YUAN X L, et al. Deep cooling scheme of quantum degenerate gas and ground experimental verification for Chinese Space Station[J]. Frontiers in Physics, 2022, 10: 971059 doi: 10.3389/fphy.2022.971059
|