Volume 45 Issue 1
Mar.  2025
Turn off MathJax
Article Contents
LIU Gonglin, NING Hao, NI Sulan, LI Chuanyang, ZHANG Zilong, LI Yaokun, CHEN Yao. Simulation on the Mechanism of Harmonic Maser Emission Through the Wave Coalescence Process (in Chinese). Chinese Journal of Space Science, 2025, 45(1): 56-65 doi: 10.11728/cjss2025.01.2024-yg29
Citation: LIU Gonglin, NING Hao, NI Sulan, LI Chuanyang, ZHANG Zilong, LI Yaokun, CHEN Yao. Simulation on the Mechanism of Harmonic Maser Emission Through the Wave Coalescence Process (in Chinese). Chinese Journal of Space Science, 2025, 45(1): 56-65 doi: 10.11728/cjss2025.01.2024-yg29

Simulation on the Mechanism of Harmonic Maser Emission Through the Wave Coalescence Process

doi: 10.11728/cjss2025.01.2024-yg29 cstr: 32142.14.cjss.2024-yg29
  • Received Date: 2024-10-21
  • Rev Recd Date: 2024-12-06
  • Available Online: 2025-01-16
  • Electron Cyclotron Maser Emission (ECME) driven by electrons with loss-cone distribution is the main mechanism for explaining solar radio spikes. However, in strongly magnetized plasmas, the losscone-driven ECME mainly generates fundamental X mode emissions, which can be efficiently absorbed when escaping through the second-harmonic layer in the solar corona. To solve the “escaping difficulty”, recent studies suggested a new mechanism of harmonic maser emission (X2) involving nonlinear wave coupling process of Z-mode and fundamental X-mode (X1) waves (Z+Z→X2, Z+X1→X2). It is necessary to verify the nonlinear wave coalescence process with theoretical analyses and numerical simulations. Here, the possibility of a nonlinear wave coupling process is examined via solving the matching conditions for three-wave resonant interaction based on the dispersion relation of cold plasma in magneto-ionic theory.The matching conditions for the Z and/or X1 waves were found to be satisfied over a wide range of parameters, leading to the production of X2 emissions that propagate perpendicularly and obliquely relative to the direction of the background magnetic field. Based on the solutions obtained in the matching condition analysis, we selected four sets of solutions of Z+Z and Z+X1 to perform particle-in-cell simulations using wave pumping method, to verify the nonlinear process of wave coalescence generating second harmonic X-mode emissions. With X1 and/or Z modes correctly pumped in the simulation domain, efficient generation of X2 emissions was observed, with saturation achieved within 400 $ {\varOmega }_{\mathrm{c}\mathrm{e}}^{-1} $. The conversion rate of energies of X2 emissions to Z mode waves varies from 2% to 8%. The study presents strong evidence to support the new mechanism of harmonic maser emission, which can be widely applied to explain the solar and space radio emissions.

     

  • loading
  • [1]
    TREUMANN R A. The electron–cyclotron maser for astrophysical application[J]. The Astronomy and Astrophysics Review, 2006, 13(4): 229-315 doi: 10.1007/s00159-006-0001-y
    [2]
    MELROSE D B. Coherent emission mechanisms in astrophysical plasmas[J]. Reviews of Modern Plasma Physics, 2017, 1(1): 5 doi: 10.1007/s41614-017-0007-0
    [3]
    TWISS R Q. Radiation transfer and the possibility of negative absorption in radio astronomy[J]. Australian Journal of Physics, 1958, 11(4): 564-579 doi: 10.1071/PH580564
    [4]
    WU C S, LEE L C. A theory of the terrestrial kilometric radiation[J]. The Astrophysical Journal, 1979, 230: 621-626 doi: 10.1086/157120
    [5]
    WU C S. Kinetic cyclotron and synchrotron maser instabilities: radio emission processes by direct amplification of radiation[J]. Space Science Reviews, 1985, 41(3): 215-298
    [6]
    ASCHWANDEN M J. Relaxation of the loss-cone by quasi-linear diffusion of the electron-cyclotron maser instability in the solar corona[J]. Astronomy and Astrophysics Supplement Series, 1990, 85: 1141-1177
    [7]
    YOON P H, ZIEBELL L F. Quasilinear evolution of cyclotron maser instability[J]. Physical Review E, 1995, 51(5): 4908-4916 doi: 10.1103/PhysRevE.51.4908
    [8]
    ZIEBELL L F, YOON P H. Quasilinear analysis of loss-cone driven weakly relativistic electron cyclotron maser instability[J]. Physics of Plasmas, 1995, 2(4): 1285-1295 doi: 10.1063/1.871459
    [9]
    LEE S Y, YI S, LIM D, et al. Loss cone-driven cyclotron maser instability[J]. Journal of Geophysical Research: Space Physics, 2013, 118(11): 7036-7044 doi: 10.1002/2013JA019298
    [10]
    MELROSE D B, DULK G A. Electron-cyclotron masers as the source of certain solar and stellar radio bursts[J]. The Astrophysical Journal, 1982, 259: 844-858 doi: 10.1086/160219
    [11]
    YOUSEFZADEH M, NING H, CHEN Y. Harmonic electron cyclotron maser emission excited by energetic electrons traveling inside a coronal loop[J]. The Astrophysical Journal, 2021, 909(1): 3 doi: 10.3847/1538-4357/abd8d5
    [12]
    NING H, CHEN Y, NI S L, et al. Harmonic electron-cyclotron maser emissions driven by energetic electrons of the horseshoe distribution with application to solar radio spikes[J]. Astronomy & Astrophysics, 2021, 651: A118
    [13]
    YOUSEFZADEH M, CHEN Y, NING H, et al. Harmonic electron cyclotron maser emission along the coronal loop[J]. The Astrophysical Journal, 2022, 932(1): 35 doi: 10.3847/1538-4357/ac6de3
    [14]
    NING H, CHEN Y, NI S L, et al. Harmonic maser emissions from electrons with loss-cone distribution in solar active regions[J]. The Astrophysical Journal Letters, 2021, 920(2): L40 doi: 10.3847/2041-8213/ac2cc6
    [15]
    BOWERS K J, ALBRIGHT B J, YIN L, et al. Ultrahigh performance three-dimensional electromagnetic relativistic kinetic plasma simulation[J]. Physics of Plasmas, 2008, 15(5): 055703 doi: 10.1063/1.2840133
    [16]
    BOWERS K J, ALBRIGHT B J, YIN L, et al. Advances in petascale kinetic plasma simulation with VPIC and Roadrunner[J]. Journal of Physics: Conference Series, 2009, 180: 012055 doi: 10.1088/1742-6596/180/1/012055
    [17]
    NI S L, CHEN Y, LI C Y, et al. An alternative form of the fundamental plasma emission through the coalescence of Z-mode waves with whistlers[J]. Physics of Plasmas, 2021, 28(4): 040701 doi: 10.1063/5.0045546
    [18]
    MELROSE D B, HEWITT R G, DULK G A. Electron-cyclotron maser emission: relative growth and damping rates for different modes and harmonics[J]. Journal of Geophysical Research: Space Physics, 1984, 89(A2): 897-904 doi: 10.1029/JA089iA02p00897
    [19]
    MELROSE D B. Emission at cyclotron harmonics due to coalescence of Z-mode waves[J]. The Astrophysical Journal, 1991, 380: 256 doi: 10.1086/170582
    [20]
    GURNETT D A. The earth as a radio source: the nonthermal continuum[J]. Journal of Geophysical Research, 1975, 80(19): 2751-2763 doi: 10.1029/JA080i019p02751
    [21]
    YE S Y, MENIETTI J D, FISCHER G, et al. Z mode waves as the source of Saturn narrowband radio emissions[J]. Journal of Geophysical Research: Space Physics, 2010, 115(A8): A08228
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article Views(297) PDF Downloads(23) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return