Turn off MathJax
Article Contents
HE Yang, Chen Tailong, HUANG Jiangping. Analysis and Evaluation of Data from Near Space Meteorological Rocket Detection in Northwest Area (in Chinese). Chinese Journal of Space Science, 2025, 45(4): 1-10 doi: 10.11728/cjss2025.04.2024-0074
Citation: HE Yang, Chen Tailong, HUANG Jiangping. Analysis and Evaluation of Data from Near Space Meteorological Rocket Detection in Northwest Area (in Chinese). Chinese Journal of Space Science, 2025, 45(4): 1-10 doi: 10.11728/cjss2025.04.2024-0074

Analysis and Evaluation of Data from Near Space Meteorological Rocket Detection in Northwest Area

doi: 10.11728/cjss2025.04.2024-0074 cstr: 32142.14.cjss.2024-0074
  • Received Date: 2024-06-06
  • Accepted Date: 2025-06-30
  • Rev Recd Date: 2024-11-29
  • Available Online: 2024-12-02
  • Meteorological rocket is an important in-situ detection method to obtain the fine structure of vertical distribution of atmospheric environment in near space, the detection results should have higher accuracy than ground-based or space-based remote sensing detection. Objective evaluation of the data quality is an important prerequisite for the effective use of the data. In this paper, the atmospheric temperature, wind field, density, and pressure in the altitude range of 20~60 km are obtained by using a meteorological sounding rocket launched in Qinghai in winter of 2023. The error correction of the temperature measured by thermistors is carried out. The detection results are compared with the data of remote sensing detection, empirical prediction model and reanalysis data. The results show that the rocket wind field results are in good agreement with the MERRA2 data, and the HWM empirical forecast model cannot accurately describe the atmospheric environment in the corresponding region. The measured temperature error of the rocket is gradually prominent when it is over 40 km, and the main error terms are current heating term, temperature hysteresis term and pneumatic heating term. The corrected temperature is in good agreement with the reference data, and the main difference of temperature data from different sources is that the height of the temperature inflection point in the stratosphere is different. The deviation of pressure and density results increases with altitude. The analysis believes that the quality of the rocket's detection data is good and the accuracy is high. Through the analysis and evaluation of the data, the effectiveness and reliability of the mathematical model of atmospheric element inversion are verified.

     

  • loading
  • [1]
    邓小龙, 杨希祥, 朱炳杰, 等. 智能平流层浮空器Loon关键技术分析与仿真[J]. 航空学报, 2023, 44(8): 127412

    DENG Xiaolong, YANG Xixiang, ZHU Bingjie, et al. Simulation research and key technologies analysis of intelligent stratospheric aerostat Loon[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(8): 127412
    [2]
    王梓皓, 姜毅, 黄宛宁, 等. 基于气球平台的临近空间环境原位探测技术研究[J]. 空天技术, 2023(4): 70-79

    WANG Zihao, JIANG Yi, HUANG Wanning, et al. Research on in-situ detection technology of near space environment[J]. Aerospace Technology, 2023(4): 70-79
    [3]
    黄宛宁, 张晓军, 李智斌, 等. 临近空间科学技术的发展现状及应用前景[J]. 科技导报, 2019, 37(21): 46-42

    HUANG Wanning, ZHANG Xiaojun, LI Zhibin, et al. Development status and application prospect of near space science and technology[J]. Science & Technology Review, 2019, 37(21): 46-62
    [4]
    熊俊辉, 李克勇, 刘燚, 等. 临近空间防御技术发展态势及突防策略[J]. 空天防御, 2021, 4(2): 82-86 doi: 10.3969/j.issn.2096-4641.2021.02.013

    XIONG Junhui, LI Keyong, LIU Yi, et al. Study on near space defense technology development and penetration strategy[J]. Air :Times New Roman;">& Space Defense, 2021, 4(2): 82-86 doi: 10.3969/j.issn.2096-4641.2021.02.013
    [5]
    顾逸东, 吴季, 陈虎, 等. 中国空间探测领域40年发展[J]. 空间科学学报, 2021, 41(1): 10-21 doi: 10.11728/cjss2021.01.010

    GU Yidong, WU Ji, CHEN Hu, et al. Review of the 40-year development of China's space exploration[J]. Chinese Journal of Space Science, 2021, 41(1): 10-21 doi: 10.11728/cjss2021.01.010
    [6]
    耿丹, 赵增亮, 万黎, 等. 冬季西北地区临近空间气象火箭探测数据分析[J]. 空间科学学报, 2022, 42(3): 396-402 doi: 10.11728/cjss2022.03.210527065

    GENG Dan, ZHAO Zengliang, WAN Li, et al. Analysis of data from near space meteorological rocket sounding in northwest China in winter[J]. Chinese Journal of Space Science, 2022, 42(3): 396-402 doi: 10.11728/cjss2022.03.210527065
    [7]
    史东波, 胡雄, 涂翠, 等. 临近空间环境探空火箭膨胀落球探测技术[J]. 装备环境工程, 2018, 15(7): 89-92

    SHI Dongbo, HU Xiong, TU Cui, et al. Near space environment detection technology—sounding rocket falling sphere[J]. Equipment Environmental Engineering, 2018, 15(7): 89-92
    [8]
    范志强, 盛峥, 万黎, 等. 临近空间气象火箭探测资料精度的综合评估[J]. 物理学报, 2013, 62(19): 199601 doi: 10.7498/aps.62.199601

    FANG Zhiqiang, SHENG Zheng, WAN Li, et al. Comprehensive assessment of the accuracy of the data from near space meteorological rocket sounding[J]. Acta Physica Sinica, 2013, 62(19): 199601 doi: 10.7498/aps.62.199601
    [9]
    范志强, 盛峥, 赵增亮, 等. 临近空间大气环境落球探测中的科氏力影响[J]. 空间科学学报, 2022, 42(1): 103-116 doi: 10.11728/cjss2022.01.201203104

    FAN Zhiqiang, SHENG Zheng, ZHAO Zengliang, et al. Impact of Coriolis force in the falling-sphere detection of near-space atmospheric environment[J]. Chinese Journal of Space Science, 2022, 42(1): 103-116 doi: 10.11728/cjss2022.01.201203104
    [10]
    GE W, SHENG Z, ZHANG Y Y, et al. The study of in situ wind and gravity wave determination by the first passive falling-sphere experiment in China's northwest region[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2019, 182: 130-137 doi: 10.1016/j.jastp.2018.11.015
    [11]
    ZHOU L S, SHENG Z, FAN Z Q, et al. Data analysis of the TK-1G sounding rocket installed with a satellite navigation system[J]. Atmosphere, 2017, 8(10): 199 doi: 10.3390/atmos8100199
    [12]
    SONG Y Y, HE Y, LENG H Z. Analysis of atmospheric elements in near space based on meteorological-rocket soundings over the East China Sea[J]. Remote Sensing, 2024, 16(2): 402 doi: 10.3390/rs16020402
    [13]
    KRÄUCHI A, PHILIPONA R, ROMANENS G, et al. Controlled weather balloon ascents and descents for atmospheric research and climate monitoring[J]. Atmospheric Measurement Techniques, 2016, 9(3): 929-938 doi: 10.5194/amt-9-929-2016
    [14]
    程旋. 临近空间大气建模及其应用研究[D]. 北京: 中国科学院国家空间科学中心, 2020

    CHENG Xuan. Researches on Atmospheric Modeling and Applications in Near Space[D]. Beijing: National Space Science Center, Chinese Academy of Sciences, 2020
    [15]
    PICONE J M, HEDIN A E, DROB D P, et al. NRLMSISE-00 empirical model of the atmosphere: statistical comparisons and scientific issues[J]. Journal of Geophysical Research: Space Physics, 2002, 107(A12): SIA15
    [16]
    DROB D P, EMMERT J T, CROWLEY G, et al. An empirical model of the Earth's horizontal wind fields: HWM07[J]. Journal of Geophysical Research: Space Physics, 2008, 113(A12): A12304
    [17]
    ERN M, PREUSSE P, GILLE J C, et al. Implications for atmospheric dynamics derived from global observations of gravity wave momentum flux in stratosphere and mesosphere[J]. Journal of Geophysical Research: Atmospheres, 2011, 116(D19): D19107 doi: 10.1029/2011JD015821
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article Metrics

    Article Views(145) PDF Downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return