Turn off MathJax
Article Contents
ZHENG Yang, LI Dan, LIANG Zuzhong, CHENG Yong, ZHENG Zhongjie. Two-stage Contour Detection Method for Small-scale Disk-resolved Celestial Datasets (in Chinese). Chinese Journal of Space Science, 2025, 45(4): 1-15 doi: 10.11728/cjss2025.04.2024-0086
Citation: ZHENG Yang, LI Dan, LIANG Zuzhong, CHENG Yong, ZHENG Zhongjie. Two-stage Contour Detection Method for Small-scale Disk-resolved Celestial Datasets (in Chinese). Chinese Journal of Space Science, 2025, 45(4): 1-15 doi: 10.11728/cjss2025.04.2024-0086

Two-stage Contour Detection Method for Small-scale Disk-resolved Celestial Datasets

doi: 10.11728/cjss2025.04.2024-0086 cstr: 32142.14.cjss.2024-0086
  • Received Date: 2024-07-03
  • Rev Recd Date: 2025-04-15
  • Available Online: 2025-05-12
  • In the astrometry of the disk resolved objects, contour detection acts as an important step, and it is equivalent to a binary classification process of classifying pixel points as contour points and non-contour points. For the purpose of automated extraction of hierarchical contour features, enhancement of contour detection precision, and accommodation of either limited-scale disk-resolved celestial datasets or preliminary-phase observational campaigns, a two-stage contour detection method for small-scale disk-resolved celestial datasets is proposed in this paper. In the first stage, a window contour detection method utilizing digital image processing techniques and comprising three operational steps: window extraction, window searching, and elliptical fitting, is employed to perform initial contour extraction. The second stage introduces an LPC-ResNet classifier, an adapted version of ResNet architecture, to supplement potential contour points missed by the window-contour detection method in the first stage. Experimental validation using New Horizons’ Long-Range Reconnaissance Imager (LORRI) images of Pluto and its biggest satellite Charon demonstrates that the window-based method achieves optimal Precision, indicating its superior capability in filtering non-contour pixels, yet exhibits limited Recall, likely due to unintended exclusion of contour points during elliptical fitting in the window-contour detection method. After incorporating the LPC-ResNet classifier, both Recall and F1 score are improved, enhancing the ability to retain contour points and resulting in more complete contour extraction. To further validate the role of LPC-ResNet classifier in refining detection outcomes, centroid measurement experiment of Pluto and Charon is conducted using the contours extracted by the two-stage detection method and the single window-contour detection method, using the ephemerides Plu060 as the reference. The results of the experiment demonstrate that the two-stage method reduces mean and standard deviation of the Observed-minus-Calculated (O-C) residuals in both x and y directions, which means that the two-stage method has higher detection precision compared to the single window-contour detection method, confirming that LPC-ResNet classifier can improve the contour extraction effect of the window-contour detection method.

     

  • loading
  • [1]
    COOPER N J, LAINEY V, MEUNIER L E, et al. The Caviar software package for the astrometric reduction of Cassini ISS images: description and examples[J]. Astronomy :Times New Roman;">& Astrophysics, 2018, 610: A2
    [2]
    ZHANG Q F, LAINEY V, COOPER N J, et al. First astrometric reduction of Cassini Imaging Science Subsystem images using an automatic procedure: application to Enceladus images 2013-2017[J]. Monthly Notices of the Royal Astronomical Society, 2018, 481(1): 98-104 doi: 10.1093/mnras/sty2187
    [3]
    ZHANG Q F, QIN W H, MA Y L, et al. Complementary astrometry of Cassini Imaging Science Subsystem images of phoebe[J]. Planetary and Space Science, 2022, 221: 105553 doi: 10.1016/j.pss.2022.105553
    [4]
    王志强, 刘梦琪, 张庆丰, 等. Cassini 图像中受散射光影响的7颗土星近环内卫星的天体测量[J]. 天文学报, 2023, 64(6): 69

    WANG Zhiqiang, LIU Mengqi, ZHANG Qingfeng, et al. Astrometry of Cassini ISS images of 7 near-ring inner satellites of Saturn affected by scattered light[J]. Acta Astronomica Sinica, 2023, 64(6): 69
    [5]
    PORTER S B, CANUP R M. Orbits and masses of the small satellites of Pluto[J]. The Planetary Science Journal, 2023, 4(7): 120 doi: 10.3847/PSJ/acde77
    [6]
    WANG L L, YU Y, YULDOSHEV Q X, et al. New reduction of old glass astronomical plates of Pallas and Vesta in 1956-1994 based on Gaia DR3 catalogue[J]. Planetary and Space Science, 2023, 227: 105637 doi: 10.1016/j.pss.2023.105637
    [7]
    NIMMO F, UMURHAN O, LISSE C M, et al. Mean radius and shape of Pluto and Charon from New Horizons images[J]. Icarus, 2017, 287: 12-29 doi: 10.1016/j.icarus.2016.06.027
    [8]
    GUO Y P, FARQUHAR R W. New Horizons mission design[J]. Space Science Reviews, 2008, 140(1): 49-74
    [9]
    STERN S A, BAGENAL F, ENNICO K, et al. The Pluto system: initial results from its exploration by New Horizons[J]. Science, 2015, 350(6258): aad1815 doi: 10.1126/science.aad1815
    [10]
    ZHARKOVA V V, IPSON S S, ZHARKOV S I, et al. A full-disk image standardisation of the synoptic solar observations at the Meudon Observatory[J]. Solar physics, 2003, 214(1): 89-105 doi: 10.1023/A:1024081931946
    [11]
    袁飞. 太阳耀斑实时监测与预报方法的研究[D]. 北京: 中国科学院大学, 2017

    YUAN Fei. Research on the Real-time Monitoring and Forecasting Method of Solar Flare[D]. Beijing: University of Chinese Academy of Sciences, 2017
    [12]
    张庆丰, 郑洋, 成国豪, 等. 使用深度神经网络检测Cassini ISS图像中圆盘状星体轮廓[J]. 空间科学学报, 2020, 40(2): 289-295 doi: 10.11728/cjss2020.02.289

    ZHANG Qingfeng, ZHENG Yang, CHENG Guohao, et al. Contour detection of disk resolved objects in Cassini ISS Image using deep neural network[J]. Chinese Journal of Space Science, 2020, 40(2): 289-295 doi: 10.11728/cjss2020.02.289
    [13]
    YANG X Q, ZHANG Q F, LI Z. Contour detection in Cassini ISS images based on Hierarchical Extreme Learning Machine and Dense Conditional Random Field[J]. Research in Astronomy and Astrophysics, 2020, 20(1): 011 doi: 10.1088/1674-4527/20/1/11
    [14]
    HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778
    [15]
    WEAVER H A, CHENG A F, MORGAN F, et al. In-flight performance and calibration of the LOng Range Reconnaissance Imager (LORRI) for the New Horizons mission[J]. Publications of the Astronomical Society of the Pacific, 2020, 132(1009): 035003 doi: 10.1088/1538-3873/ab67ec
    [16]
    PUKELSHEIM F. The three sigma rule[J]. The American Statistician, 1994, 48(2): 88-91 doi: 10.1080/00031305.1994.10476030
    [17]
    XU M L, YOON S, FUENTES A, et al. A comprehensive survey of image augmentation techniques for deep learning[J]. Pattern Recognition, 2023, 137: 109347 doi: 10.1016/j.patcog.2023.109347
    [18]
    张伟, 张咪, 金佳齐, 等. 基于ResNet深度学习网络的隔离开关状态识别研究[J]. 高压电器, 2024, 60(6): 99-106

    ZHANG Wei, ZHANG Mi, JIN Jiaqi, et al. Research on status identification of disconnector based on ResNet deep learning network[J]. High Voltage Apparatus, 2024, 60(6): 99-106
    [19]
    OPITZ J, BURST S. Macro F1 and macro F1[OL]. arXiv preprint arXiv: 1911.03347, 2019
    [20]
    CHEN S, GAMECHI Z S, DUBOST F, et al. An end-to-end approach to segmentation in medical images with CNN and posterior-CRF[J]. Medical Image Analysis, 2022, 76: 102311 doi: 10.1016/j.media.2021.102311
    [21]
    YU Q, SHI C. An image classification approach for painting using improved convolutional neural algorithm[J]. Soft Computing, 2024, 28(1): 847-873 doi: 10.1007/s00500-023-09420-1
    [22]
    AL-ZEBARI A. Ensemble convolutional neural networks and transformer-based segmentation methods for achieving accurate sclera segmentation in eye images[J]. Signal, Image and Video Processing, 2024, 18(2): 1879-1891 doi: 10.1007/s11760-023-02891-7
    [23]
    冯伟, 刘光宇, 曹禹, 等. 典型微分算子的图像边缘检测对比研究[J]. 河南科技学院学报(自然科学版), 2022, 50(4): 54-61

    FENG Wei, LIU Guangyu, CAO Yu, et al. A comparative study of image edge detection with typical differential operators[J]. Journal of Henan Institute of Science and Technology (Natural Science Edition), 2022, 50(4): 54-61
    [24]
    COOPER N J, MURRAY C D, PORCO C C, et al. Cassini ISS astrometric observations of the inner Jovian satellites, Amalthea and Thebe[J]. Icarus, 2006, 181(1): 223-234 doi: 10.1016/j.icarus.2005.11.007
    [25]
    COOPER N J, MURRAY C D, LAINEY V, et al. Cassini ISS mutual event astrometry of the mid-sized Saturnian Satellites 2005-2012[J]. Astronomy & Astrophysics, 2014, 572: A43
    [26]
    ACTON JR C H. Ancillary data services of NASA's Navigation and Ancillary Information Facility[J]. Planetary and Space Science, 1996, 44(1): 65-70 doi: 10.1016/0032-0633(95)00107-7
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(5)

    Article Metrics

    Article Views(203) PDF Downloads(14) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return