Volume 45 Issue 4
Aug.  2025
Turn off MathJax
Article Contents
CUI Yulang, LI Yijian, ZHOU Jianghua. Arc Second Pointing System of Near Space Observatories WASP (in Chinese). Chinese Journal of Space Science, 2025, 45(4): 1016-1037 doi: 10.11728/cjss2025.04.2024-0094
Citation: CUI Yulang, LI Yijian, ZHOU Jianghua. Arc Second Pointing System of Near Space Observatories WASP (in Chinese). Chinese Journal of Space Science, 2025, 45(4): 1016-1037 doi: 10.11728/cjss2025.04.2024-0094

Arc Second Pointing System of Near Space Observatories WASP

doi: 10.11728/cjss2025.04.2024-0094 cstr: 32142.14.cjss.2024-0094
  • Received Date: 2024-07-29
  • Rev Recd Date: 2025-02-11
  • Available Online: 2025-03-27
  • The Wallops Arc Second Pointer (WASP), developed by the National Aeronautics and Space Administration (NASA) in response to the challenge of sub-arcsecond-level pointing stability for high-altitude scientific balloon platforms during long-duration observational missions, is a near-space observatory-grade sub-arcsecond pointing system designed to establish a multi-payload-compatible near-space astronomical observation platform. Comprising a Pointing Control System (PCS) and a star tracker subsystem (Camera Attitude Reference Determination System, CARDS), WASP serves as the core technology for achieving high-precision fine-pointing control in near-space environments. By integrating precision mechanical and electronic components with super-pressure balloon technology, the system enables extended-duration missions in near-space while maintaining sub-arcsecond-level pointing accuracy. Its modular design and standardized interfaces allow seamless adaptation to diverse scientific payloads, fulfilling varied mission requirements. To transition early-stage ground-test hardware and software from laboratory settings to real-world flight conditions, the WASP team collaborated with multiple research groups to conduct five successive test flights. These flights validated the system's technical methodologies and performance capabilities while enabling further optimizations based on operational mission requirements. Following the completion of WASP’s development phase, the system has engaged in scientific collaborations with numerous research teams, producing notable achievements. Since 2014, WASP has supported missions including the X-Calibur hard X-ray polarimeter, BITSE (Balloon-borne Investigation of Temperature and Speed of Electrons in the corona), PICTURE-C (Planetary Imaging Concept Testbed Using a Recoverable Experiment-Coronagraph), SuperHERO (Super High-Energy Resolution Observatory), and XL-Calibur, yielding groundbreaking scientific results across astrophysics and planetary science domains. In the field of space science, WASP not only expands the research scope of high-altitude balloon platforms but also provides innovative solutions for constructing near-space observatories, advancing the exploration of near-space environments. The successful test flights and operational deployments of WASP have laid a foundation for its applications in planetary science, astrophysics, and Earth observation, while offering a reliable reference for the development of near-space science in China.

     

  • loading
  • [1]
    黄宛宁, 张晓军, 李智斌, 等. 临近空间科学技术的发展现状及应用前景[J]. 科技导报, 2019, 37(21): 46-62

    HUANG Wanning, ZHANG Xiaojun, LI Zhibin, et al. Development status and application prospect of near space science and technology[J]. Science Technology Review, 2019, 37(21): 46-62
    [2]
    SMITH-PIERCE M C, CHAROENBOONVIVAT Y C, SHUKLA D, et al. High altitude aerodynamic reflectors to counter climate change[C]//2018 Applied Aerodynamics Conference. New York: AIAA, 2018
    [3]
    STREETMAN B J. Attitude tracking control simulating the Hubble Space Telescope[C]//Proceedings of the AIAA Guidance, Control, and Dynamics Conference. Reston: American Institute of Aeronautics and Astronautics, 2003
    [4]
    SMITH R L, JOHNSON T K, DAVIS M J, et al. High-altitude balloon platforms for optical imaging: System design and feasibility analysis[J]. Journal of Astronomical Telescopes, Instruments, and Systems, 2010, 6(2): 023001
    [5]
    黄宛宁, 李智斌, 张钊, 等. 2019年临近空间科学技术热点回眸[J]. 科技导报, 2020, 38(1): 38-46

    HUANG Wanning, LI Zhibin, ZHANG Zhao, et al. Summary of hot spots of near space vehicles in 2019[J]. Science :Times New Roman;">& Technology Review, 2020, 38(1): 38-46
    [6]
    李智斌, 黄宛宁, 张钊, 等. 2020年临近空间科技热点回眸[J]. 科技导报, 2021, 39(1): 54-68

    LI Zhibin, HUANG Wanning, ZHANG Zhao, et al. Summary of the hot spots of near space science and technology in 2020[J]. Science Technology Review, 2021, 39(1): 54-68
    [7]
    顾逸东. 关于空间科学发展的一些思考[J]. 中国科学院院刊, 2022, 37(8): 1031-1049

    GU Yidong. Thoughts on space science development[J]. Bulletin of Chinese Academy of Sciences, 2022, 37(8): 1031-1049
    [8]
    王赤, 时蓬, 宋婷婷, 等. 远航2050: 欧洲空间科学规划及启示[J]. 科技导报, 2022, 40(4): 6-15

    WANG Chi, SHI Peng, SONG Tingting, et al. Voyage 2050: ESA Science’s Long-term plane and enlightenment[J]. Science Technology Review, 2022, 40(4): 6-15
    [9]
    FAIRBROTHER D A. The NASA balloon program - positioning for the future[C]//AIAA Balloon Systems Conference. Dallas, TX: American Institute of Aeronautics and Astronautics, 2015
    [10]
    祝榕辰, 王生. 超压气球研究与发展现状[C]//第二十四届全国空间探测学术交流会论文摘要集. 西安: 中国空间科学学会, 2011

    ZHU Rongchen, WANG Sheng. Research and development status of superpressure balloons[C]//Summary of Papers at the 24th National Space Exploration Academic Exchange Conference. Xi’an: Chinese Society of Space Sciences, 2011
    [11]
    祝榕辰, 王生, 杨燕初, 等. 南瓜型超压气球球体设计与地面试验[C]//第四届高分辨率对地观测学术年会论文集. 北京: 中国科学院高分辨率对地观测系统重大专项管理办公室, 2017

    ZHU Rongchen, WANG Sheng, YANG Yanchu, et al. Design and ground experiments of pumpkin shaped overpressure balloon spheres[C]//Proceedings of the 4th High Resolution Earth Observation Academic Annual Conference. Beijing: Office of Major Special Management of High Resolution Earth Observation Systems, Chinese Academy of Sciences, 2017
    [12]
    YAJIMA N. A new design and fabrication approach for pressurized balloon[J]. Advances in Space Research, 2000, 26(9): 1357-1360 doi: 10.1016/S0273-1177(00)00060-0
    [13]
    DEWEESE K D, WARD P R. Demonstration of a balloon borne arc-second pointer design[C]//36th COSPAR Scientific Assembly. Beijing: NTRS, 2006
    [14]
    WARD P R, DEWEESE K. Arc-Second Pointer for Balloon-Borne Astronomical Instrument[R]. Greenbelt: NASA Goddard Space Flight Center, 2004. NASA-CR-2004-213153
    [15]
    STUCHLIK D. The wallops Arc second pointer-a balloon borne fine pointing system[C]//AIAA Balloon Systems Conference. Dallas: AIAA, 2015
    [16]
    STUCHLIK D. The NASA Wallops Arc-Second Pointer (WASP) system for precision pointing of scientific balloon instruments and telescopes[C]//AIAA Balloon Systems Conference. Denver: AIAA, 2017
    [17]
    SMITH I S JR. Advancements in NASA balloon research and development[J]. Advances in Space Research, 1996, 17(9): 37-44 doi: 10.1016/0273-1177(95)00674-4
    [18]
    FAIRBROTHER D A. 2017 NASA balloon program update[C]//AIAA Balloon Systems Conference. Denver, Colorado: American Institute of Aeronautics and Astronautics, 2017
    [19]
    YAJIMA N, KOGAJI S, HASHINO K. Research on the Direction Control System of a Balloon-Borne Telescope[R]. Tsukuba: Mechanical Engineering Laboratory, AIST, 1986. MEL Technical Report 86-015
    [20]
    叶祥明. 大型球载望远镜高精度姿态控制及指向技术研究[D]. 北京: 中国科学院北京天文台, 1999

    YE Xiangming. Study on High-accuracy Attitude Control and Pointing Technology of A Large Balloon-borne Solar Telescope[D]. Beijing: National Astronomical Observatories, Chinese Academy of Sciences, 1999
    [21]
    PASCALE E, ADE P A R, BOCK J J, et al. The balloon-borne large aperture submillimeter telescope: BLAST[J]. The Astrophysical Journal, 2008, 681(1): 400 doi: 10.1086/588541
    [22]
    张伟, 袁朝辉, 章卫国, 等. 平流层球载系统方位控制仿真与试验研究[J]. 计算机仿真, 2009, 26(8): 37-40 doi: 10.3969/j.issn.1006-9348.2009.08.010

    ZHANG Wei, YUAN Zhaohui, ZHANG Weiguo, et al. Simulation and experiment study of attitude control for stratospheric balloon-borne gondola system[J]. Computer Simulation, 2009, 26(8): 37-40 doi: 10.3969/j.issn.1006-9348.2009.08.010
    [23]
    何琳琳, 刘兆瑜, 窦满锋, 等. 高空气球吊篮方位控制的反作用飞轮系统[J]. 微特电机, 2007, 35(8): 36-38,41 doi: 10.3969/j.issn.1004-7018.2007.08.013

    HE Linlin, LIU Zhaoyu, DOU Manfeng, et al. Research on the reaction wheel control system in the azimuth control of nacelle[J]. Small :Times New Roman;">& Special Electrical Machines, 2007, 35(8): 36-38,41 doi: 10.3969/j.issn.1004-7018.2007.08.013
    [24]
    刘艳霄, 宋腾飞, 张涛, 等. 欧洲球载太阳望远镜SUNRISE及相关研究成果简介[J]. 天文研究与技术, 2021, 18(3): 314-336

    LIU Yanxiao, SONG Tengfei, ZHANG Tao, et al. Overview of balloon-borne solar telescope-SUNRISE[J]. Astronomical Research :Times New Roman;">& Technology, 2021, 18(3): 314-336
    [25]
    王鸿辉, 袁朝辉, 何长安. 球载吊篮方位控制综合解耦器设计[C]//第三十二届中国控制会议论文集(D卷). 西安: 中国自动化学会控制理论专业委员会, 中国系统工程学会, 2013: 5222-5226

    WANG Honghui, YUAN Zhaohui, HE Chang’an. Design of comprehensive decoupler for balloon-borne Gondola’s Azimuth control[C]//Proceedings of the 32nd Chinese Control Conference (D Volume). Xi’an: Technical Committee on Control Theory, Chinese Association of Automation, Systems Engineering Society of China, 2013: 5222-5226
    [26]
    SHOJI Y, TAGUCHI M, NAKANO T, et al. FUJIN-2: Balloon borne telescope for optical observation of planets[J]. Transactions of the Japan Society for Aeronautical and Space Sciences, Aerospace Technology Japan, 2016, 14(ists30): 95-102
    [27]
    YE X, YAJIMA N, AI G, et al. Attitude control and high precision pointing control system of a large balloon borne solar telescope[J]. Advances in Space Research, 2000, 26(9): 1419-1422 doi: 10.1016/S0273-1177(00)00076-4
    [28]
    HANAGUD A, SIMPSON J, LANZI R, et al. A solar pointing system for the long duration balloon missions[C]//International Balloon Technology Conference. San Francisco: AIAA, 2012
    [29]
    KOPP G, SMITH P, BELTING C, et al. Radiometric flight results from the HyperSpectral imager for climate science (HySICS)[J]. Geoscientific Instrumentation, Methods and Data Systems, 2017, 6(1): 169-191 doi: 10.5194/gi-6-169-2017
    [30]
    HURFORD T A, MANDELL A M, REDDY V, et al. Observatory for planetary investigations from the stratosphere[J]. Earth and Space Science, 2015, 2(4): 171-184
    [31]
    KISLAT F, BEHESHTIPOUR B, DOWKONTT P, et al. Design of the telescope truss and gondola for the balloon-borne X-ray polarimeter X-Calibur[J]. Journal of Astronomical Instrumentation, 2017, 6(2): 1740008 doi: 10.1142/S2251171717400086
    [32]
    ABARR Q, BEHESHTIPOUR B, BEILICKE M, et al. Performance of the X-Calibur hard X-ray polarimetry mission during its 2018/19 long-duration balloon flight[J]. Astroparticle Physics, 2022, 143: 102749 doi: 10.1016/j.astropartphys.2022.102749
    [33]
    ABARR Q, AWAKI H, BARING M G, et al. XL-Calibur -- a second-generation balloon-borne hard X-ray polarimetry mission[J]. Astroparticle Physics, 2021, 126: 102529
    [34]
    GONG Q, GOPALSWAMY N, NEWMARK J. Innovative Compact Coronagraph Approach for Balloon-borne Investigation of Temperature and Speed of Electrons in the Corona (BITSE)[C]//Astronomical Optics: Design, Manufacture, and Test of Space and Ground Systems II. San Diego, United States: SPIE, 2019: 111160F
    [35]
    GOPALSWAMY N, NEWMARK J, YASHIRO S, et al. The Balloon-borne Investigation of Temperature and Speed of Electrons in the corona (BITSE): mission description and preliminary results[J]. Solar Physics, 2021, 296(1): 15 doi: 10.1007/s11207-020-01751-8
    [36]
    COOK T, CAHOY K, CHAKRABARTI S, et al. Planetary imaging concept testbed using a recoverable experiment–coronagraph (PICTURE C)[J]. Journal of Astronomical Telescopes, Instruments, and Systems, 2015, 1(4): 044001 doi: 10.1117/1.JATIS.1.4.044001
    [37]
    MENDILLO C B, HEWAWASAM K, HOWE G A, et al. Decoupling the image-plane and low-order wavefront sensors for the PICTURE-C coronagraph[C]//Proceedings Volume 11117, Techniques and Instrumentation for Detection of Exoplanets IX. San Diego: SPIE, 2019
    [38]
    MENDILLO C B, HEWAWASAM K, MARTEL J, et al. Balloon flight demonstration of coronagraph focal plane wavefront correction with PICTURE-C[J]. Journal of Astronomical Telescopes, Instruments, and Systems, 2023, 9(2): 025005
    [39]
    MENDILLO C B, HEWAWASAM K, MARTEL J, et al. The PICTURE-C exoplanetary imaging balloon mission: second flight results and the transition to a new mission, PICTURE-D[C]//Proceedings Volume 12680, Techniques and Instrumentation for Detection of Exoplanets XI. San Diego: SPIE, 2023
    [40]
    GASKIN J, APPLE J, CHAVIS K S, et al. High energy replicated optics to explore the sun: hard X-ray balloon-borne telescope[C]//2013 IEEE Aerospace Conference. Big Sky, MT: IEEE, 2013: 1-11
    [41]
    GASKIN J, ELSNER R, RAMSEY B, et al. SuperHERO: Design of a new hard-X-ray focusing telescope[C]//2015 IEEE Aerospace Conference. Big Sky, MT: IEEE, 2015: 1-15
    [42]
    YOUNG R. Overview of the Gondola for High Altitude Planetary Science (GHAPS)[R]. Greenbelt: International Society for Optical Engineering, 2016
    [43]
    LEWIS M, JUERGENS J R, ARETSKIN-HARITON E, et al. Gondola for High Altitude Planetary Science (GHAPS) Guide System Trade Study[R]. Pasadena: NASA Jet Propulsion Laboratory, 2020
    [44]
    UDINSKI E P, LANZI R J. Wallops Arc-Second Pointing (WASP) System[R]. Athens: NASA, 2023
    [45]
    HEATWOLE S H, CRAIG S D, CASTELLUCCI K J, et al. Low-Cost Star Tracker Development for Suborbital and Small Satellite Platforms[R]. Greenbelt: NASA Goddard Space Flight Center, 2019
    [46]
    GALCHENKO P, PERNICKA H. Neural network attitude control system design for the wallops arc-second pointer[J]. Journal of Guidance, Control, and Dynamics, 2022, 45(7): 1365-1370 doi: 10.2514/1.G006465
    [47]
    马俊, 朱猛, 王才喜, 等. 临近空间光电探测技术与发展展望[J]. 空天技术, 2022(2): 85-96

    MA Jun, ZHU Meng, WANG Caixi, et al. Technology and development prospect of electro-optical detection in near space[J]. Aerospace Technology, 2022(2): 85-96
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(33)  / Tables(2)

    Article Metrics

    Article Views(236) PDF Downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return