Turn off MathJax
Article Contents
DU Xiaolong, BAI Meng. Anomaly Detection Method for Satellite Telemetry Parameters Based on Time-Series Imputation Generative Adversarial Networks (in Chinese). Chinese Journal of Space Science, 2025, 45(4): 1-12 doi: 10.11728/cjss2025.04.2024-0099
Citation: DU Xiaolong, BAI Meng. Anomaly Detection Method for Satellite Telemetry Parameters Based on Time-Series Imputation Generative Adversarial Networks (in Chinese). Chinese Journal of Space Science, 2025, 45(4): 1-12 doi: 10.11728/cjss2025.04.2024-0099

Anomaly Detection Method for Satellite Telemetry Parameters Based on Time-Series Imputation Generative Adversarial Networks

doi: 10.11728/cjss2025.04.2024-0099 cstr: 32142.14.cjss.2024-0099
  • Received Date: 2024-08-03
  • Accepted Date: 2025-07-10
  • Rev Recd Date: 2024-12-12
  • Available Online: 2024-12-17
  • To ensure the safe and stable operation of satellites, it is of paramount importance to promptly conduct data mining, situation analysis, and abnormal response for telemetry parameters. Given the limitations of existing methods in effectively addressing satellite telemetry parameter anomalies, this paper introduces an innovative anomaly detection method that leverages temporal interpolation and Generative Adversarial Networks (GANs). The proposed method employs a one-dimensional Convolutional Neural Network (1DCNN) to extract temporal features from the telemetry data. These features are then used to model the distribution of telemetry parameters through a generative adversarial network, which consists of a generator and a discriminator that are trained simultaneously to learn the distribution of normal data. The method innovatively incorporates a detection approach based on interpolation, which significantly enhances the accuracy of anomaly detection and the capability to handle complex and subtle anomalies that may not be easily identified by traditional methods. The effectiveness of the proposed method is validated through comprehensive testing on real satellite data as well as established public datasets. Results demonstrate that, when compared with various existing anomaly detection methods, the proposed approach achieves the highest F1 scores on the majority of the datasets tested. This indicates a superior balance between precision and recall, which is crucial for reliable anomaly detection. Furthermore, the method exhibits good stability under different anomaly densities, suggesting its robustness in varying operational conditions. This research outcome not only enhances the understanding of satellite telemetry anomalies but also provides strong decision support for ground operation in satellite mission analysis and anomaly handling, thereby contributing to the overall safety and efficiency of satellite operations.

     

  • loading
  • [1]
    王赤. 大力发展空间科学 推动我国空间活动高质量发展[J]. 中国科学基金, 2024, 38(2): 363-364

    WANG Chi. Developing space science vigorously to promote high-quality development of space activities in China[J]. Bulletin of National Natural Science Foundation of China, 2024, 38(2): 363-364
    [2]
    王赤, 邹自明, 胡晓彦, 等. 空间科学大数据与航天强国[J]. 科学通报, 2024, 69(9): 1132-1136

    WANG Chi, ZOU Ziming, HU Xiaoyan, et al. Big data in space science and great power of space[J]. Chinese Science Bulletin, 2024, 69(9): 1132-1136
    [3]
    薛玉雄, 杨生胜, 把得东, 等. 空间辐射环境诱发航天器故障或异常分析[J]. 真空与低温, 2012, 18(2): 63-70 doi: 10.3969/j.issn.1006-7086.2012.02.001

    XUE Yuxiong, YANG Shengsheng, BA Dedong, et al. Analyze of spacecraft system failures and anomalies attributed to the natural space radiation environment[J]. Vacuum and Cryogenics, 2012, 18(2): 63-70 doi: 10.3969/j.issn.1006-7086.2012.02.001
    [4]
    王亚坤, 杨凯飞, 张婕, 等. 卫星在轨故障案例与人工智能故障诊断[J]. 中国空间科学技术, 2022, 42(1): 16-29

    WANG Yakun, YANG Kaifei, ZHANG Jie, et al. Case study of in-orbit satellite failures and artificial intelligence based failure detection[J]. Chinese Space Science and Technology, 2022, 42(1): 16-29
    [5]
    王彧泽, 吕良庆, 何睿. 航天器数据定义方法及其工具设计[J]. 航天器工程, 2024, 33(1): 62-67

    WANG Yuze, LYU Liangqing, HE Rui. Spacecraft data definition method and tool design[J]. Spacecraft Engineering, 2024, 33(1): 62-67
    [6]
    杨甲森. 卫星遥测数据相关性知识发现方法研究[D]. 北京: 中国科学院大学(中国科学院国家空间科学中心), 2019

    YANG Jiasen. Research on correlation Knowledge Discovery Method of Satellite Telemetry Data[D]. Beijing: Chinese Academy of Sciences (National Space Science Center, the Chinese Academy of Sciences), 2019
    [7]
    CHIKODILI N B, ABDULMALIK M D, ABISOYE O A, et al. Outlier detection in multivariate time series data using a fusion of K-medoid, standardized euclidean distance and Z-score[C]//Proceedings of the 3rd International Conference on Information and Communication Technology and Applications. Minna: Springer, 2021: 259-271
    [8]
    TSIGKRITIS T, GROUMAS G, SCHNEIDER M. On the use of k-NN in anomaly detection[J]. Journal of Information Security, 2018, 9(1): 70-84 doi: 10.4236/jis.2018.91006
    [9]
    SHERIDAN K, PURANIK T G, MANGORTEY E, et al. An application of DBSCAN clustering for flight anomaly detection during the approach phase[C]//Proceedings of the AIAA Scitech 2020 Forum. Orlando: AIAA, 2020: 1851
    [10]
    胡智超, 余翔湛, 刘立坤, 等. 基于上下文生成对抗网络的时间序列异常检测方法[J]. 哈尔滨工业大学学报, 2024, 56(5): 1-11 doi: 10.11918/202212029

    HU Zhichao, YU Xiangzhan, LIU Likun, et al. A time series anomaly detection method based on contextual generative adversarial network[J]. Journal of Harbin Institute of Technology, 2024, 56(5): 1-11 doi: 10.11918/202212029
    [11]
    ZHOU T, MA Z Q, WEN Q S, et al. FEDformer: frequency enhanced decomposed transformer for long-term series forecasting[C]//Proceedings of the 39th International Conference on Machine Learning. Baltimore: PMLR, 2022: 27268-27286
    [12]
    BASHAR A, NAYAK R. TAnoGAN: time series anomaly detection with generative adversarial networks[C]//Proceedings of 2020 IEEE Symposium Series on Computational Intelligence. Canberra: IEEE, 2020: 1778-1785
    [13]
    LIN S Y, CLARK R, BIRKE R, et al. Anomaly detection for time series using VAE-LSTM hybrid model[C]//Proceedings of the ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing. Barcelona: IEEE, 2020. DOI: 10.1109/ICASSP40776.2020.9053558
    [14]
    PAPARRIZOS J, KANG Y H, BONIOL P, et al. TSB-UAD: an end-to-end benchmark suite for univariate time-series anomaly detection[J]. Proceedings of the VLDB Endowment, 2022, 15(8): 1697-1711 doi: 10.14778/3529337.3529354
    [15]
    DARBAN Z Z, WEBB G I, PAN S R, et al. Deep learning for time series anomaly detection: a survey[J]. ACM Computing Surveys, 2025, 57(1): 15
    [16]
    GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems. Montreal: MIT Press, 2014: 2672-2680
    [17]
    AHMAD S, LAVIN A, PURDY S, et al. Unsupervised real-time anomaly detection for streaming data[J]. Neurocomputing, 2017, 262: 134-147 doi: 10.1016/j.neucom.2017.04.070
    [18]
    XU S Y, LIU H Y, DUAN L T, et al. An improved LOF outlier detection algorithm[C]//Proceedings of 2021 IEEE International Conference on Artificial Intelligence and Computer Applications. Dalian: IEEE, 2021: 113-117
    [19]
    MISHRA S, KSHIRSAGAR V, DWIVEDULA R, et al. Attention-based Bi-LSTM for anomaly detection on time-series data[C]//Proceedings of the 30th International Conference on Artificial Neural Networks. Bratislava: Springer, 2021: 129-140
    [20]
    赵玉炜, 苏举. 基于参数自适应优化聚类的卫星状态异常检测方法[J]. 空间科学学报, 2023, 43(5): 927-937 doi: 10.11728/cjss2023.05.2022-0054

    ZHAO Yuwei, SU Ju. Satellite anomaly detection method based on parameter adaptive optimization clustering[J]. Chinese Journal of Space Science, 2023, 43(5): 927-937 doi: 10.11728/cjss2023.05.2022-0054
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(5)

    Article Metrics

    Article Views(208) PDF Downloads(19) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return