Citation: | DU Xiaolong, BAI Meng. Anomaly Detection Method for Satellite Telemetry Parameters Based on Time-Series Imputation Generative Adversarial Networks (in Chinese). Chinese Journal of Space Science, 2025, 45(4): 1-12 doi: 10.11728/cjss2025.04.2024-0099 |
[1] |
王赤. 大力发展空间科学 推动我国空间活动高质量发展[J]. 中国科学基金, 2024, 38(2): 363-364
WANG Chi. Developing space science vigorously to promote high-quality development of space activities in China[J]. Bulletin of National Natural Science Foundation of China, 2024, 38(2): 363-364
|
[2] |
王赤, 邹自明, 胡晓彦, 等. 空间科学大数据与航天强国[J]. 科学通报, 2024, 69(9): 1132-1136
WANG Chi, ZOU Ziming, HU Xiaoyan, et al. Big data in space science and great power of space[J]. Chinese Science Bulletin, 2024, 69(9): 1132-1136
|
[3] |
薛玉雄, 杨生胜, 把得东, 等. 空间辐射环境诱发航天器故障或异常分析[J]. 真空与低温, 2012, 18(2): 63-70 doi: 10.3969/j.issn.1006-7086.2012.02.001
XUE Yuxiong, YANG Shengsheng, BA Dedong, et al. Analyze of spacecraft system failures and anomalies attributed to the natural space radiation environment[J]. Vacuum and Cryogenics, 2012, 18(2): 63-70 doi: 10.3969/j.issn.1006-7086.2012.02.001
|
[4] |
王亚坤, 杨凯飞, 张婕, 等. 卫星在轨故障案例与人工智能故障诊断[J]. 中国空间科学技术, 2022, 42(1): 16-29
WANG Yakun, YANG Kaifei, ZHANG Jie, et al. Case study of in-orbit satellite failures and artificial intelligence based failure detection[J]. Chinese Space Science and Technology, 2022, 42(1): 16-29
|
[5] |
王彧泽, 吕良庆, 何睿. 航天器数据定义方法及其工具设计[J]. 航天器工程, 2024, 33(1): 62-67
WANG Yuze, LYU Liangqing, HE Rui. Spacecraft data definition method and tool design[J]. Spacecraft Engineering, 2024, 33(1): 62-67
|
[6] |
杨甲森. 卫星遥测数据相关性知识发现方法研究[D]. 北京: 中国科学院大学(中国科学院国家空间科学中心), 2019
YANG Jiasen. Research on correlation Knowledge Discovery Method of Satellite Telemetry Data[D]. Beijing: Chinese Academy of Sciences (National Space Science Center, the Chinese Academy of Sciences), 2019
|
[7] |
CHIKODILI N B, ABDULMALIK M D, ABISOYE O A, et al. Outlier detection in multivariate time series data using a fusion of K-medoid, standardized euclidean distance and Z-score[C]//Proceedings of the 3rd International Conference on Information and Communication Technology and Applications. Minna: Springer, 2021: 259-271
|
[8] |
TSIGKRITIS T, GROUMAS G, SCHNEIDER M. On the use of k-NN in anomaly detection[J]. Journal of Information Security, 2018, 9(1): 70-84 doi: 10.4236/jis.2018.91006
|
[9] |
SHERIDAN K, PURANIK T G, MANGORTEY E, et al. An application of DBSCAN clustering for flight anomaly detection during the approach phase[C]//Proceedings of the AIAA Scitech 2020 Forum. Orlando: AIAA, 2020: 1851
|
[10] |
胡智超, 余翔湛, 刘立坤, 等. 基于上下文生成对抗网络的时间序列异常检测方法[J]. 哈尔滨工业大学学报, 2024, 56(5): 1-11 doi: 10.11918/202212029
HU Zhichao, YU Xiangzhan, LIU Likun, et al. A time series anomaly detection method based on contextual generative adversarial network[J]. Journal of Harbin Institute of Technology, 2024, 56(5): 1-11 doi: 10.11918/202212029
|
[11] |
ZHOU T, MA Z Q, WEN Q S, et al. FEDformer: frequency enhanced decomposed transformer for long-term series forecasting[C]//Proceedings of the 39th International Conference on Machine Learning. Baltimore: PMLR, 2022: 27268-27286
|
[12] |
BASHAR A, NAYAK R. TAnoGAN: time series anomaly detection with generative adversarial networks[C]//Proceedings of 2020 IEEE Symposium Series on Computational Intelligence. Canberra: IEEE, 2020: 1778-1785
|
[13] |
LIN S Y, CLARK R, BIRKE R, et al. Anomaly detection for time series using VAE-LSTM hybrid model[C]//Proceedings of the ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing. Barcelona: IEEE, 2020. DOI: 10.1109/ICASSP40776.2020.9053558
|
[14] |
PAPARRIZOS J, KANG Y H, BONIOL P, et al. TSB-UAD: an end-to-end benchmark suite for univariate time-series anomaly detection[J]. Proceedings of the VLDB Endowment, 2022, 15(8): 1697-1711 doi: 10.14778/3529337.3529354
|
[15] |
DARBAN Z Z, WEBB G I, PAN S R, et al. Deep learning for time series anomaly detection: a survey[J]. ACM Computing Surveys, 2025, 57(1): 15
|
[16] |
GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems. Montreal: MIT Press, 2014: 2672-2680
|
[17] |
AHMAD S, LAVIN A, PURDY S, et al. Unsupervised real-time anomaly detection for streaming data[J]. Neurocomputing, 2017, 262: 134-147 doi: 10.1016/j.neucom.2017.04.070
|
[18] |
XU S Y, LIU H Y, DUAN L T, et al. An improved LOF outlier detection algorithm[C]//Proceedings of 2021 IEEE International Conference on Artificial Intelligence and Computer Applications. Dalian: IEEE, 2021: 113-117
|
[19] |
MISHRA S, KSHIRSAGAR V, DWIVEDULA R, et al. Attention-based Bi-LSTM for anomaly detection on time-series data[C]//Proceedings of the 30th International Conference on Artificial Neural Networks. Bratislava: Springer, 2021: 129-140
|
[20] |
赵玉炜, 苏举. 基于参数自适应优化聚类的卫星状态异常检测方法[J]. 空间科学学报, 2023, 43(5): 927-937 doi: 10.11728/cjss2023.05.2022-0054
ZHAO Yuwei, SU Ju. Satellite anomaly detection method based on parameter adaptive optimization clustering[J]. Chinese Journal of Space Science, 2023, 43(5): 927-937 doi: 10.11728/cjss2023.05.2022-0054
|